1.题目描述
给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。
求在该柱状图中,能够勾勒出来的矩形的最大面积。
以上是柱状图的示例,其中每个柱子的宽度为 1,给定的高度为 [2,1,5,6,2,3]。
图中阴影部分为所能勾勒出的最大矩形面积,其面积为 10 个单位。
示例:
2.思路(单调栈)
单调递增栈操作规则:
1.如果新的元素比栈顶元素大,就入栈
2.如果新的元素较小,那就一直把栈内元素弹出来,直到栈顶比新元素小
3.当元素出栈时,说明这个新元素是出栈元素向后找第一个比其小的元素
此时right = i - 1
4.当元素出栈后,说明新栈顶元素是出栈元素向前找第一个比其小的元素
此时left = s.back() + 1
举例:
栈里是 1 5 6 。
接下来新元素是 2 ,那么 6 需要出栈。
当 6 出栈时,右边 2 代表是 6 右边第一个比 6 小的元素。
当 6 出栈时,5 成为新的栈顶,那么 5 就是 6 左边第一个比 6 小的元素。
3.代码
int largestRectangleArea(vector<int>& heights){
int res = 0;
vector<int> s;
for(int i = 0;i < heights.size();++i){
while(!s.empty() && heights[s.back()] > heights[i]){
int curr = s.back();
s.pop_back();
int left = s.back() + 1;
int right = i - 1;
res = max(res, (right - left + 1) * heights[curr]);
}
s.push_back(i);
}
return res;
}
4.复杂度分析
时间复杂度:O(N)。
空间复杂度:O(N)。