【每日算法】快速排序及其应用

本文介绍了快速排序算法,详细阐述了其分治思想和基本步骤,并提供了C++实现。此外,讨论了如何利用快速排序变形来寻找第k大的数字和最小的k个数,这些方法的时间复杂度为O(n)。同时,提到了不能改变数组时的解决方案和多数投票算法。
摘要由CSDN通过智能技术生成

快速排序

快排的最坏运行时间为O(n^2),平均运行时间为O(n logn),且隐含的常数因子很小,能够进行就地排序。

快排基于分治模式,其基本思想:

分解:从序列中取出一个数作为基准数,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边,从而得到两个子序列。

解决:递归调用快速排序,对两个子序列进行排序。

合并:因为子序列是就地排序的,所以合并不需要任何操作。

伪代码:

quickSort(arr, l, r)
    if l < r
        then 
            p = partition(arr, l, r)
            quickSort(arr, l, p-1)
            quickSort(arr, p+1, r)

我们只需调用:

quickSort(arr, 0, length(arr)-1)

上面代码中,关键是partition的过程:

  1. 选择基准元素(有多种版本:选择首尾元素or选择中间元素or随机选择等等);
  2. 顺序扫描一遍数组,将比基准元素小的就地交换到前面;
  3. 将基准元素放到中间;
  4. 返回分界点下标。

举个例子arr[0…8]:

3 4 2 7 9 6 5 1 8

我们选取最后一个元素为基准元素:

x = arr[r] = arr[8] = 8;

设置一个下标,表示有序数组最右端的下标:

i = l-1 = 0-1 = -1;   //此时有序数组为空

接下来从左往右扫描一遍,将小于等于x的元素交换到有序数组的末尾:

for j = l to r-1
    if arr[j] <= x
        i = i+1;
        exchange(arr[i], arr[j]);

数组arr的变化如下:

j = 0, i = 03 4 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值