快速排序
快排的最坏运行时间为O(n^2),平均运行时间为O(n logn),且隐含的常数因子很小,能够进行就地排序。
快排基于分治模式,其基本思想:
分解:从序列中取出一个数作为基准数,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边,从而得到两个子序列。
解决:递归调用快速排序,对两个子序列进行排序。
合并:因为子序列是就地排序的,所以合并不需要任何操作。
伪代码:
quickSort(arr, l, r)
if l < r
then
p = partition(arr, l, r)
quickSort(arr, l, p-1)
quickSort(arr, p+1, r)
我们只需调用:
quickSort(arr, 0, length(arr)-1)
上面代码中,关键是partition的过程:
- 选择基准元素(有多种版本:选择首尾元素or选择中间元素or随机选择等等);
- 顺序扫描一遍数组,将比基准元素小的就地交换到前面;
- 将基准元素放到中间;
- 返回分界点下标。
举个例子arr[0…8]:
3 4 2 7 9 6 5 1 8
我们选取最后一个元素为基准元素:
x = arr[r] = arr[8] = 8;
设置一个下标,表示有序数组最右端的下标:
i = l-1 = 0-1 = -1; //此时有序数组为空
接下来从左往右扫描一遍,将小于等于x的元素交换到有序数组的末尾:
for j = l to r-1
if arr[j] <= x
i = i+1;
exchange(arr[i], arr[j]);
数组arr的变化如下:
j = 0, i = 0:
3 4