题目:Large Language Model Enhanced Multi-Agent Systems for 6G Communications
作者:江沸菠, 彭于波, 董莉, 王可之, 杨鲲, 潘存华, Dusit Niyato, Octavia A. Dobre
来源:IEEE Wireless Communications
论文地址:https://ieeexplore.ieee.org/abstract/document/10638533(查看全文请点击原文链接)
代码:https://github.com/jiangfeibo/CommLLM.git
引用:F. Jiang et al., "Large Language Model Enhanced Multi-Agent Systems for 6G Communications," in IEEE Wireless Communications, doi: 10.1109/MWC.016.2300600.
大型语言模型(LLM)的快速发展为6G通信带来了巨大的机遇——例如网络优化和管理——通过允许用户使用自然语言向LLM输入任务需求。然而,直接在6G中应用原生LLM面临各种挑战,例如缺乏通信数据和知识,以及逻辑推理、评估和改进能力有限。将LLM与检索、规划、记忆、评估和反思等智能体的能力相结合,可以极大增强LLM在6G通信中的潜力。为此,本文提出了CommLLM,这是一个多智能体系统,具备定制的通信知识和工具,用于通过自然语言解决通信相关任务。该系统由三个部分组成:多智能体数据检索(MDR),通过提炼智能体和推理智能体从知识库中提炼和总结通信知识,扩展LLM在6G通信中的知识边界;多智能体协同规划(MCP),利用多个规划智能体基于检索到的知识从不同角度生成通信相关任务的可行解决方案;以及多智能体评估和反思(MER),评估智能体用于评估解决方案,反思智能体和改进智能体为当前解决方案提供改进建议。最后,本文通过设计一个语义通信系统作为6G通信的案例研究,验证了所提出的多智能体系统的有效性。
目录
1. 引言
未来一代的无线通信技术,例如6G,预计将提供卓越的数据速率、超低延迟以及显著增强的容量,以支持大量用户设备的连接。为了实现这一愿景,提出了多种创新技术,如边缘智能和语义通信(SC),其中人工智能(AI)/机器学习(ML)作为关键的支持技术。然而,当前的智能通信系统设计主要基于传统的AI/ML,这些技术可以被视为判别式AI技术,在应用于6G通信时面临多个挑战。
大规模AI模型(LAMs)作为最先进的预训练基础模型,提供了一种全新的范式来解决判别式AI的挑战[1]。LAM在生成式AI领域代表了一项重要的进步,利用其巨大的规模、强大的泛化能力和海量的训练数据,在各种任务中实现了最先进的性能。其理解意图并生成解决方案的能力,为改进6G通信的广泛应用开辟了新的可能性。LAM的主要特性及其如何克服6G中判别式AI的挑战,概述如下:
1.1 卓越的全局感知和决策能力
未来的通信系统预计将在快速变化的环境中运行,这种变化可能由设备的移动和网络流量波动等多种因素引起。然而,传统的判别式AI/ML主要依赖于学习局部和短期特征,容易陷入局部极值,或难以学习动态网络的长期依赖性,并难以以可扩展的方式实现稳定运行。
LAM拥有数万亿参数,能够从全局角度捕捉大量特征,并可以在不同的尺度上记忆和捕捉时空依赖关系。这种机制使得LAM能够生成稳定且及时的响应,而不像传统神经网络需要重新训练以适应环境变化。例如,LAM的多头自注意力机制能够全面学习网络中的动态因素,如用户的移动性和流量波动。这一机制避免了由动态环境引起的长期遗忘效应,从而实现了准确的全局流量预测和资源分配[2]。
1.2 出色的鲁棒性和泛化性
未来的通信系统将支持多种设备,例如物联网(IoT)或无人机(UAV),并提供多种管理策略,如波束成形设计、用户关联和边缘资源分配。然而,传统的判别式AI/ML主要基于学习特定任务的特征,例如仅关注某一种类型的任务[3]。
LAM通常通过多种类型的数据和任务进行训练,以增强其泛化能力。海量数据使LAM能够在训练过程中稳健地捕捉异构设备、不平衡数据和不同任务中的复杂网络模式和细微差别。例如,通过学习信道状态信息(CSI)及各类边缘设备和边缘服务器的计算、通信和存储资源的约束,可以设计一个通用的卸载模型,使用提示词(Prompt)实现不同系统模型或优化目标的卸载优化和资源调度,而无需对LAM进行重新训练。
1.3 惊人的理解力和创造力
未来的通信系统需要为不同的应用场景提供定制化解决方案。例如,在自动驾驶服务中,系统需要极低的延迟和高可靠性的传输,而在物联网应用中,系统必须支持海量连接。传统的判别式AI/ML由为特定应用场景训练的小型模型组成,限制了它们在特定环境中的应用。
基于其卓越的理解能力,LAM能够在6G网络中主动分析用户需求和偏好,从而理解各种应用场景,并为不同应用提供个性化的计算和通信服务。凭借其惊人的创造力,LAM可以通过自学习和自适应能力动态规划、配置和优化未来的通信网络。
本文描述了大型语言模型(LLM)在未来通信网络中的潜在角色。为了解决LLM应用于6G的现有挑战,本文提出了一个LLM增强的多智能体系统——CommLLM。该系统配备了定制的通信知识和工具,通过多个智能体之间的协作和交互,优化在6G网络中的任务解决能力。具体而言,用户首先通过自然语言表达其任务需求。然后,提出多智能体数据检索(MDR),以从私有数据中查询和总结6G通信领域的特定知识。接着,创新的多智能体协同规划(MCP)基于检索到的通信知识将原始任务分解,生成多个可行的子任务链并加以解决。随后,提出多智能体评估与反思(MER),用于评估、反思并改进当前的可行解决方案。整体上,这些组成了一个通过自然语言解决通信相关问题的自学习和自适应多智能体系统。最后,本文通过案例研究验证了该多智能体系统的有效性。