PAT甲1002(A+B for Polynomials)

甲1002 A+B for Polynomials

两个多项式A,B进行相加,每个多项式先输入此多项式有几项(K项),然后依次输入每一项的指数和系数

例如:

Note:

  1. 输出系数的结果保留一位小数,cout<<setiosflags(ios::fixed)<<setprecision(1)<<变量<<endl;头文件<iomanip>中  io代表输入输出,manip是manipulator(操纵器)的缩写。setiosflags(ios::fixed)是指以固定的浮点显示,当setiosflags(ios::fixed)和setprecision(n)两个一起用时就标识保留n为小数输出。
  2. visual c++ 2010 在执行完程序后会不停留退出执行,需要加头文件<iostream> 程序末尾return前加system("pause")

原题:

1002 A+B for Polynomials (25分)

This time, you are supposed to find A+B where A and B are two polynomials.

Input Specification:

Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial:

K N​1​​ a​N​1​​​​ N​2​​ a​N​2​​​​ ... N​K​​ a​N​K​​​​

where K is the number of nonzero terms in the polynomial, N​i​​ and a​N​i​​​​ (i=1,2,⋯,K) are the exponents and coefficients, respectively. It is given that 1≤K≤10,0≤N​K​​<⋯<N​2​​<N​1​​≤1000.

Output Specification:

For each test case you should output the sum of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.

Sample Input:

2 1 2.4 0 3.2
2 2 1.5 1 0.5

Sample Output:

3 2 1.5 1 2.9 0 3.2

法一:单链表实现:

如下图所示,为一元多项式 A(x)=7+3x+9x8+5x17 和 B(x)=8x+22x7-9x8 的链表表示图:


定义结构体 PLnode: 单链表一个结点表示多项式的一项;

函数void creatpolyn(PLinkList L, int k):创建多项式函数输入值为(头节点,项数k)

函数PLinkList Addpolyn(PLinkList La, PLinkList Lb):完成多项式相加,返回相加后的多项式链表头节点Lc

 

#include<cstdio>
#include<stdlib.h>
#include<iostream>
#include<iomanip>//控制精度头文件
using namespace std;

typedef struct PLnode{
	int a;//指数
	float b;//系数
	struct PLnode *next;
}PLnode,*PLinkList;


//链表表示创建多项式,K项系数和指数(a系数0~1000,b指数1~10)
void creatpolyn(PLinkList L, int k){
	L->next = NULL;
	L->a = k;//头结点指数域记录多项书长度(K项)
	L->b = -1;//头节点系数域设为-1
	PLnode *p = L;//指针p作为遍历链表的指针 
	
	//创建K个节点并将其初始化,链接到L上
	for(int i = 1; i <= k; i++){
		PLnode *newk = (PLnode*)malloc(sizeof(PLnode));
		cin >> newk->a >> newk->b;
		p->next = newk;
		p = newk;
		p->next = NULL;
	}
}

//完成多项式相加运算  Lc=La+Lb
PLinkList Addpolyn(PLinkList La, PLinkList Lb){
	int Lc_k = 0;//Lc的项数,
	PLinkList Lc = (PLnode*)malloc(sizeof(PLnode));
	Lc->next = NULL;
	PLnode *pa = La->next, *pb = Lb->next, *pc = Lc, *p;
	Lb->next = NULL; free(Lb);
	La->next = NULL; free(La);
	while(pa && pb){
		int x = pa->a - pb->a;//指数相减判断大小

		if(x < 0){     //若pb所指项的指数大于pa所指项的指数,则将pb链接在Lc上
			pc->next = pb;
			pc = pb;
			pb = pb->next;
			pc->next = NULL;
			++Lc_k;
		}else if(x > 0){//若pb所指项的指数小于pa所指项的指数,则将pa链接在Lc上
			pc->next = pa;
			pc = pa;
			pa = pa->next;
			pc->next = NULL;
			++Lc_k;
		}else if(x == 0){//若指数相等
			float n = pa->b + pb->b;//指数相等的项系数相加
			if(n != 0.0){     //若系数和不为0,则创建系数等于n的结点并连接到Lc上
				p = (PLnode*)malloc(sizeof(PLnode));
				p->a = pa->a;
				p->b = n;
				pc->next = p;
				pc = p;
				pc->next = NULL;
				++Lc_k;
			}
			//释放pa pb 所指节点
		    p = pa;//释放pa
		    pa = pa->next;
			free(p);
			p = pb;//释放pb
			pb = pb ->next;
			free(p);
			
		}	
	}
	while(pa){
		pc->next = pa;
		pc = pa;
		pa = pa->next;
		++Lc_k;
	}
	while(pb){
		pc->next = pb;
		pc = pb;
		pb = pb->next;
		++Lc_k;
	}
	pc->next = NULL;
	Lc->a = Lc_k;
	Lc->b = -1;	
	return Lc;
}

//输出Lc
void printpolyn(PLinkList Lc){
	PLnode *p = Lc->next;
	cout << Lc->a;
	while(p){
	    cout << " "<<p->a ;
		cout << setiosflags(ios::fixed)
		     <<setprecision(1)
			 <<" "
			 << p->b;
		p = p->next;
	}
	cout << endl;
}

int main(){
    PLinkList La, Lb, Lc;
	La = (PLinkList)malloc(sizeof(PLnode));
	Lb = (PLinkList)malloc(sizeof(PLnode));
	Lc = (PLinkList)malloc(sizeof(PLnode));
	int La_k, Lb_k;
	cin >> La_k;
	creatpolyn(La,La_k);
	cin >> Lb_k;
	creatpolyn(Lb,Lb_k);

	Lc = Addpolyn(La,Lb);
	printpolyn(Lc);
	system("pause");
	return 0;
}

思路参考http://data.biancheng.net/view/90.html 中的讲述,改动趋向王道数据结构中经典单链表相加课后习题。

用此方法实现较好理解但实现要100多行。

法二:

以空间换时间的方式

创建一个大于题目要求的指数范围0~1000的数组a[1010]={}

用数组下标表示指数p,数组中存储系数k

#include<iostream>
#include<iomanip>
using namespace std; 

int main(){
	int k1, k2, i;
	float a[1010]={};
	float k;//系数
	int p;//指数

	cin >> k1;//输入第一个多项式的项数
	for(i = 0; i < k1; i++){
		cin >> p >>k;//依次输入每个项的“指数,系数”
		a[p] = k;//指数为p的系数是k!!!!!!
	}
	cin >> k2;//输入第二个多项式的项数
	for(i = 0; i < k2; i++){
		cin >> p >> k;//依次输入每个项的“指数,系数”
		a[p] = a[p] + k;//找到对应指数的系数相加!!!!!!
	}

	int n = 0;//统计相加后的多项式的长度
	for(i = 0; i <= 1000; i++){
		if(a[i] != 0) n++;
	}

	//输出结果
	cout << n;
	for(int i = 1000; i >= 0; i--){
		if(a[i] != 0)
			cout <<" "<<i<<" "
			<<setiosflags(ios::fixed)
			<<setprecision(1)
			<<a[i];
	}
	return 0;
}

很巧妙的方法20多行可实现,代码参考https://blog.csdn.net/miao_599/article/details/83310906

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值