题意:给出一个N*M的矩形格子,用2*1的块去填满块的方案数。
2<=N<=1000, 3<=m<=5
思路:由于M比较小,可以用位对其进行记录,矩形内1*1的格子的状态有
横着的开始,横着的结尾,竖着的开始,竖着的结尾,所以用0,1,2,3
来分别进行表示,这样用一个2bit即可。
为了加速,先把不可能的一些状态进行剔除,把中间的可能转移状态一次计算好,
在状态转移的时候直接拿来用就比较省时间。
#include<cstdio>
#include<iostream>
#include<cstring>
#include<queue>
#include<string>
#include<vector>
using namespace std;
int dp[1111][1111];
int n,nstate,m,q;
int state[1111];
vector<int> v[1111];
const int M=1000000007;
int get(int x,int n)
{
return (x&(3<<(n<<1)))>>(n<<1);
}
bool isFrist(int x)
{
for (int i=0;i<m;i++)
{
int temp=get(x,i);
if (temp==0) i++;
else if (temp==2) continue;
else return false;
}
return true;
}
bool isEnd(int x)
{
for (int i=0;i<m;i++)
{
int temp=get(x,i);
if (temp==0) i++;
else if (temp==3) continue;
else return false;
}
return true;
}
bool isok(int x)
{
for (int i=0;i<m;i++)
{
int temp=get(x,i);
if (temp==0)
{
if (temp==m-1) return false;
if (get(x,i+1)!=1) return false;
i++;
}
else if (temp==1) return false;
}
return true;
}
bool isok2(int x,int y)
{
for (int i=0;i<m;i++)
{
//cout<<i<<' '<<get(x,i)<<' '<<get(y,i)<<endl;
int temp=get(x,i);
if (temp==2)
{
if (get(y,i)!=3) return false;
}
else if (get(y,i)==3) return false;
}
return true;
}
int main()
{
freopen("in","r",stdin);
cin>>n>>m;
nstate=1<<(m<<1);
q=0;
for (int i=0;i<nstate;i++) if (isok(i)) state[q++]=i;
for (int i=0;i<q;i++) if (isFrist(state[i])) dp[0][state[i]]=1;
for (int i=0;i<q;i++) for (int j=0;j<q;j++) if (isok2(state[i],state[j])) v[i].push_back(state[j]);
for (int i=0;i<n-1;i++) for (int j=0;j<q;j++) if (dp[i][state[j]])
{
// cout<<state[j]<<endl;
for (int k=0;k<v[j].size();k++)
dp[i+1][v[j][k]]=(dp[i+1][v[j][k]]+dp[i][state[j]])%M;
}
int ans=0;
for (int i=0;i<nstate;i++) if (isEnd(i)) ans=(ans+dp[n-1][i])%M;
cout<<ans<<endl;
//cout<<endl;
//cout<<isok2(68,68)<<endl;
// for (int i=0;i<nstate;i++) if (dp[0][i]) cout<<i<<' '<<v[i].size()<<endl;
}