反正切函数(P1183)

#include<iostream>
#include<stdio.h>
#include<math.h>
using namespace std;
int main()
{
 __int64 a,b,i;
 scanf("%I64d",&a);
 //b=ceil(sqrt(4*a*a+4.0)+2*a);
 for(i=a;i>=1;i--)
   if ((a*a+1)%i==0) break;
 printf("%I64d\n",(a*a+1)/i+i+2*a);
 cin>>a;
 return 0;
}

反正切函数的应用
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 12687 Accepted: 4563

Description

反正切函数可展开成无穷级数,有如下公式

(其中0 <= x <= 1) 公式(1)

使用反正切函数计算PI是一种常用的方法。例如,最简单的计算PI的方法:

PI=4arctan(1)=4(1-1/3+1/5-1/7+1/9-1/11+...) 公式(2)

然而,这种方法的效率很低,但我们可以根据角度和的正切函数公式:

tan(a+b)=[tan(a)+tan(b)]/[1-tan(a)*tan(b)] 公式(3)

通过简单的变换得到:

arctan(p)+arctan(q)=arctan[(p+q)/(1-pq)] 公式(4)

利用这个公式,令p=1/2,q=1/3,则(p+q)/(1-pq)=1,有

arctan(1/2)+arctan(1/3)=arctan[(1/2+1/3)/(1-1/2*1/3)]=arctan(1)

使用1/2和1/3的反正切来计算arctan(1),速度就快多了。
我们将公式(4)写成如下形式

arctan(1/a)=arctan(1/b)+arctan(1/c)

其中a,b和c均为正整数。

我们的问题是:对于每一个给定的a(1 <= a <= 60000),求b+c的值。我们保证对于任意的a都存在整数解。如果有多个解,要求你给出b+c最小的解。

Input

输入文件中只有一个正整数a,其中 1 <= a <= 60000。

Output

输出文件中只有一个整数,为 b+c 的值。

Sample Input

1

Sample Output

5

Source


PLL 类估算器 本应用笔记使用的估算器就是 AN1162 《交流感应电 机 (ACIM)的无传感器磁场定向控制 (FOC) 》(见 “ 参考文献 ”)采用的估算器,只是在本文用于 PMSM 电机而已。 估算器采用 PLL 结构。其工作原理基于反电动势 (BEMF)的 d 分量在稳态运行模式必须等于零。图 6 给出了估算器的框图。 如图 6 的闭环控制回路所示,对转子的估算转速 (ω Restim)进行积分,以获取估算角度,如公式 1 所示: 将 BEMF 的 q 分量除以电压常量 ΚΦ 得到估算转速 ω Restim,如公式 2 所示: 考虑公式 2 给出的最初估算假设(BEMF 的 d 轴值在 稳态下为零),根据 BEMF q 轴值 Edf 的符号,使用 BEMF d 轴值 Edf 对 BEMF q 轴值 Edf 进行校正。经过公 式 3 显示的 Park 变换后,使用一阶滤波器对 BEMF d-q 分量值进行滤波。 采用固定的定子坐标系,公式 4 代表定子电路公式。 在公式 4 ,包含 α – β 的项通过经 Clarke 变换的三相 系统的对应测量值得到。以 Y 型(星型)连接的定子相 为例, LS 和 RS 分别代表每个相的定子电感和电阻。若 电机采用 Δ 连接, 则应计算等效的 Y 型连接相电阻和电 感,并在上述公式使用。 图 7 表示估算器的参考电路模型。电机的 A、 B 和 C 端 连接到逆变器的输出端。电压 VA、 VB 和 VC 代表施加 给电机定子绕组的相电压。 VAB、 VBC 和 VCA 代表逆变 器桥臂间的线电压,相电流为 IA、 IB 和 IC。
反正函数的图像在0到正无穷的区间内是单调递增的,并且在无穷大时趋于 $\frac{\pi}{2}$。因此,我们可以用一个多项式函数来拟合反正函数在这个区间内的值。 首先,我们需要将反正函数的定义域从 $[0,+\infty)$ 映射到 $[-1,1]$ 上。这可以通过变换 $x'=\frac{2x}{x^2+1}-1$ 来实现。这样,反正函数就变成了一个定义在 $[-1,1]$ 上的函数。 然后,我们可以使用最小二乘法来拟合多项式函数。我们可以选择一个 $n$ 阶多项式 $P(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n$,其 $n$ 是多项式的阶数,$a_0,a_1,\cdots,a_n$ 是待求系数。我们的目标是使得多项式函数 $P(x)$ 与反正函数之间的误差最小,即最小化 $\sum_{i=1}^{m} \left(\operatorname{arctan}(x_i)-P(x_i)\right)^2$,其 $m$ 是训练集的大小,$x_i$ 是训练集第 $i$ 个样本的输入值。 通过求解最小二乘问题,我们可以得到多项式函数 $P(x)$ 的系数。最终的拟合结果可以用图像来表示,如下所示: ```python import numpy as np import matplotlib.pyplot as plt # 将反正函数的定义域映射到[-1,1]上 X = np.linspace(-1, 1, 1000) Y = np.arctan(X) # 选择一个6阶多项式进行拟合 n = 6 x_train = np.linspace(-1, 1, 100) y_train = np.arctan(x_train) X_train = np.zeros((len(x_train), n)) for i in range(n): X_train[:, i] = np.power(x_train, i) # 求解最小二乘问题,得到多项式系数 w = np.linalg.inv(X_train.T.dot(X_train)).dot(X_train.T).dot(y_train) # 计算拟合结果 Y_pred = np.zeros(len(X)) for i in range(n): Y_pred += w[i] * np.power(X, i) # 画图 plt.plot(X, Y, label='arctan(x)') plt.plot(X, Y_pred, label='P(x)') plt.xlabel('x') plt.ylabel('y') plt.legend() plt.show() ``` 上述代码使用了 numpy 库来求解最小二乘问题,并使用 matplotlib 库来绘制函数图像。你可以根据需要调整多项式的阶数,以得到更好的拟合效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值