实践 | LSTM、GRU、CNN三种方法实现文本审核

引用库

# from __future__ import print_function
import json
import six
# import paddlehub as hub
import paddlehub as hub

参数配置

test_text = ["打击色情犯罪,是每一个人的责任", '引导未成年人远离黄赌毒'] #文本内容
use_gpu=True #是否调用GPU
batch_size=2 #批处理大小

模型配置

通过lstm实现

def porn_detection_lstm(test_text, use_gpu ,batch_size):
    # Load porn_detection_lstm module
    porn_detection_lstm = hub.Module(name="porn_detection_lstm")
    input_dict = {"text": test_text}
    results = porn_detection_lstm.detection(data=input_dict, use_gpu=use_gpu, batch_size=batch_size)
    return results

通过gru实现

def porn_detection_gru(test_text, use_gpu, batch_size):
    # Load porn_detection_gru module
    porn_detection_gru = hub.Module(name="porn_detection_gru")
    input_dict = {"text": test_text}
    results = porn_detection_gru.detection(data=input_dict, use_gpu=use_gpu, batch_size=batch_size)
    return results

通过cnn实现

def porn_detection_cnn(test_text, use_gpu, batch_size):
    # Load porn_detection_cnn module
    porn_detection_cnn = hub.Module(name="porn_detection_cnn")
    results = porn_detection_cnn.detection(texts=test_text, use_gpu=use_gpu, batch_size=batch_size)
    return results

调用三种不同网络结构

lstm = porn_detection_lstm(test_text, use_gpu, batch_size) #调用lstm
gru = porn_detection_gru(test_text, use_gpu, batch_size)   #调用gru
cnn = porn_detection_cnn(test_text, use_gpu, batch_size)   #调用cnn

输出结果

Tips:label的值越高则涉及的可能性越高

# print(lstm)
# print(gru)
# print(cnn)
def output_dict(dic,pre='LSTM'):
    print('------\nPorn detection with {}'.format(pre))
    for line in dic:
        for k,v in line.items():
            print('{:20s}: {}'.format(k,v))

output_dict(lstm)
output_dict(gru,'GRU')
output_dict(cnn,'CNN')

for index, text in enumerate(test_text):
    lstm[index]["text"] = text
    print("文本内容:",text)
    label = (lstm[index]["porn_detection_label"] + gru[index]["porn_detection_label"] + cnn[index]["porn_detection_label"])
    porn_probs = (lstm[index]["porn_probs"] + gru[index]["porn_probs"] + cnn[index]["porn_probs"])/3
    not_porn_probs = (lstm[index]["not_porn_probs"] + gru[index]["not_porn_probs"] + cnn[index]["not_porn_probs"])/3
    print('label:%0.0f, porn_probs:%0.5f, not_porn_probs:%0.5f' % (label, porn_probs, not_porn_probs))

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值