内积空间、赋范向量空间、Banach空间和Hilbert空间

内积空间、赋范向量空间、Banach空间和Hilbert空间


[1]张贤达.矩阵分析与应用[M].清华大学出版社:北京,2004:23-25.

向量空间

 以向量为元素的集合 V V V称为向量空间,若加法运算定义为两个向量之间的加法,乘法运算定义为两个向量与标量域 S S S中的标量之间的乘法,并且对于向量集合 V V V中的向量和标量域 S S S的标量满足两个闭合性和关于加法和乘法的8个公理。
 
 闭合性:

  1. x ∈ V \bm{x}\in V xV y ∈ V \bm{y}\in V yV,则 x + y ∈ V \bm{x}+\bm{y}\in V x+yV,称为加法的闭合性
  2. a ∈ S a\in S aS是一个标量, y ∈ V \bm{y}\in V yV,则 a y ∈ V a\bm{y}\in V ayV,称为标量乘法的闭合性

 加法和乘法的8个公理:

  1. 加法交换律
  2. 加法结合律
  3. V V V中存在零向量 0 \bm{0} 0,对 ∀ y ∈ V \forall y \in V yV,恒有 y + 0 = y \bm{y}+\bm{0}=\bm{y} y+0=y
  4. 存在负向量
  5. a ( b y ) = ( a b ) y a(b\bm{y})=(ab)\bm{y} a(by)=(ab)y
  6. ( a + b ) y = a y + b y (a+b)\bm{y}=a\bm{y}+b\bm{y} (a+b)y=ay+by
  7. a ( x + y ) = a x + b y a(\bm{x}+\bm{y})=a\bm{x}+b\bm{y} a(x+y)=ax+by
  8. 1 y = y 1\bm{y}=\bm{y} 1y=y,称为标量乘法单位率

内积和内积空间

 定义内积的三个公理:

  1. 共轭对称性, ⟨ x , y ⟩ = ⟨ y , x ⟩ ∗ \langle\bm{x},\bm{y}\rangle=\langle\bm{y},\bm{x}\rangle^* x,y=y,x
  2. 第一变元的线性性, ⟨ α x + β y , z ⟩ = α ⟨ x , z ⟩ + β ⟨ y , z ⟩ \langle\alpha\bm{x}+\beta\bm{y},\bm{z}\rangle=\alpha\langle\bm{x},\bm{z}\rangle+\beta\langle\bm{y},\bm{z}\rangle αx+βy,z=αx,z+βy,z
  3. 非负性, ⟨ x , x ⟩ ≥ 0 \langle \bm{x},\bm{x}\rangle\geq0 x,x0,并且 ⟨ x , x ⟩ = 0 ⇔ x = 0 \langle \bm{x},\bm{x}\rangle=0\Leftrightarrow\bm{x}=0 x,x=0x=0

 综上可得:
⟨ x , y ⟩ = x H y = ∑ i = 1 n x i ∗ y i \langle \bm{x},\bm{y}\rangle=\bm{x}^H\bm{y}=\sum_{i=1}^nx_i^*y_i x,y=xHy=i=1nxiyi
满足内积三个公理的实向量空间和复向量空间是实内积向量空间和复内积向量空间。

范数和赋范向量空间

 定义范数 p ( x ) : V → R p(\bm{x}):V\rightarrow R p(x):VR的三个公理:

  1. 非负性, p ( x ) ≥ 0 p(\bm{x})\geq0 p(x)0,并且 p ( x ) = 0 ⇔ x = 0 p(\bm{x})=0\Leftrightarrow\bm{x}=\bm{0} p(x)=0x=0
  2. 齐次性, p ( c x ) = ∣ c ∣ ⋅ ( x ) p(c\bm{x})=|c|\cdotp(\bm{x}) p(cx)=c(x)对任意复常数 c c c成立
  3. 三角不等式, p ( x + y ) ≤ p ( x ) + p ( y ) p(\bm{x}+\bm{y})\leq p(\bm{x})+p(\bm{y}) p(x+y)p(x)+p(y)

满足范数定义的(实或复)向量空间是赋范向量空间

Banach空间

对于赋范向量空间 V V V,若对任一柯西序列 { v n } n = 1 ∞ ⊂ V \{\bm{v}_n\}_{n=1}^\infin\subset V {vn}n=1V,在 V V V内存在一个元素 v \bm{v} v,使得 lim ⁡ n → ∞ v n → v \lim_{n\rightarrow\infin}\bm{v}_n\rightarrow\bm{v} limnvnv,则称 V V V为Banach空间

Hilbert空间

一个相对于范数完备,即满足范数收敛 lim ⁡ n → ∞ ∣ ∣ v n ∣ ∣ → ∣ ∣ v ∣ ∣ \lim_{n\rightarrow\infin}||\bm{v}_n||\rightarrow||\bm{v}|| limnvnv的赋范向量空间 V V V称为Hilbert空间。显然,Banach空间 ⊃ \supset Hilbter空间。

总结

参考文献图片

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值