矩阵论第一节——线性空间

1、定义(满足十条)

  • 加法运算封闭,有唯一的x+y∈V

 注意:这里的加法可以自行定义,如:\left ( a,b \right ){\color{Blue} +}\left ( c,d \right ) = \left ( a+c,b+d+a\times c \right )

  • 满足交换律:x+y = y+x
  • 满足结合律:x+\left ( y+z \right ) = \left ( x+y\right ) +z
  • 存在零元:0\in V,即x+0 = x
  • 存在负元素:任一元素x\in V,存在有一元素y\in V使得x+y=0

数乘运算封闭,当x\in V\lambda \in P 有唯一\lambda x\in V

  •  满足分配律:\left (\lambda +\mu \right )x=\lambda x+\mu x
  • 满足数因子分配律:\lambda \left ( x+y \right )=\lambda x+\lambda y
  • 满足结合律:\lambda \left ( \mu x \right ) = \left ( \lambda \mu \right )x
  • 存在1元素:1\cdot x = x   (注:这里的1是指数域P中的单位数)

2、基、维数、坐标

tips:对于线性空间而言,基不唯一。要找到最适合用于研究的基,方便对于线性空间的研究。

元素组\Leftrightarrow向量组

y_i=\bigl(\begin{smallmatrix} x_1 & ... &x_n \end{smallmatrix}\bigr)\begin{pmatrix} \alpha_1\\ ... \\ \alpha_n \end{pmatrix}

k_1y_1 + k_2y_2 + k_3y_3 + ...+k_ny_n = \begin{pmatrix} x_1, & ... & x_n \end{pmatrix}\bigl(\begin{smallmatrix} k_1\alpha_1,\\ ... \\ k_m\alpha_m \end{smallmatrix}\bigr) =\Theta 备注:这里的\Theta是指零元素。

例题:矩阵空间{R}^{2\times 2}中,设A = \left ( a_{ij} \right )_{2\times 2},基E_{11},E_{12},E_{21},E_{22},其中

E_{11} = \begin{bmatrix} 1 & 0 \\ 0& 0 \end{bmatrix}, E_{12} = \begin{bmatrix} 0 & 1\\ 0& 0 \end{bmatrix},E_{21} = \begin{bmatrix} 0 & 0 \\ 1& 0 \end{bmatrix},E_{22} = \begin{bmatrix} 0 & 0 \\ 0& 1 \end{bmatrix}   矩阵对应下标为1,其余元素为0

备注:一个线性空间的基是不唯一的,但是这里选取的基可以方便研究

矩阵空间A的任意元素都可以由基表示:

A=a_{11}E_{11} + a_{12}E_{12} + a_{21}E_{21}+a_{22}E_{22} ,坐标为 \alpha = \left ( a_{11},a_{12},a_{21},a_{22} \right )

其实也存在另外的基:\begin{bmatrix} 1 & 0 \\ 0& 0 \end{bmatrix},\begin{bmatrix} 1 & 1 \\ 0& 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1& 0 \end{bmatrix},\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, 以坐标为\alpha = \left ( 0,0,0,0 \right ) 为例

运算起来就是:\begin{bmatrix} k_1 & k_1+k_2\\ k_1+k_2+k_3&k_1+ k_2+k_3+k_4 \end{bmatrix} = \begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix}  求解得到\left\{\begin{matrix} k_1 = 0\\ k_2 = 0\\ k_3 = 0\\ k_4 = 0 \end{matrix}\right.

空间变换

利用过度矩阵C_{n\times n} (一定可逆)(Ⅱ) = (Ⅰ)C        (Ⅱ)C^{-1} = (Ⅰ)CC^{-1} = (Ⅰ)

以y变为x为例:\left ( y_1, ..., y_n \right ) = \left ( x_1,...,x_m \right )C_{n\times n}

坐标变换:

        x = \left ( x_1,x_2,...,x_n \right )\alpha

        x = (y_1,y_2,...,y_n)\beta = (x_1,x_2,...,x_n)C\beta

即   \alpha = C\beta,这里的C就是过渡矩阵 ,也可以说是\beta = C^{-1}\alpha

一般利用中介法来求过渡矩阵,中介指的是基E_{11},E_{12},E_{21},E_{22}

线性空间的例子:

①向量空间R^n,基是\begin{pmatrix} 1 & 0 &0 &... & 0 \end{pmatrix} ,\begin{pmatrix} 0& 1 & 0 & ... & 0 \end{pmatrix}, 共有n个,n维向量由n个基

②矩阵空间R_{n\times m},基是E_{ij} 是m×n维

③n元齐次线性方程组的解空间S_1 = \begin{Bmatrix} x|Ax = 0 \end{Bmatrix} ,其中的x的维度是 n - r\left ( A \right )

线性空间就是满足十条的集合,这里给出三个具体的例子帮助理解。

线性空间的运算(子集、交、并、和)

子空间(子集非空,且对V中的线性运算封闭,其中必须要有零元 \Theta \in V_1

一种等价的判定:

线性运算kx+ly \in V_1 封闭 \Leftrightarrow\left\{\begin{matrix} k=l=1 \\ k \in R,l=0 \end{matrix}\right.加法  & 数乘(等价判定)

矩阵的列空间(值域)R(A) : \left \{ \beta = Ax| x \in C^n \right \} rank(A) = dimR(A)极大无关组的个数 = 矩阵A的秩

补充:零空间

N(A) = \left \{ x|Ax = 0,x \in C^n \right \}dimN(A) = n-rank(A)

线性空间(映射)的性质:

\alpha _1,...,\alpha _n是一组基,代表\forall \alpha \in V,\alpha = k_1\alpha_1 + ... +k_n\alpha_n

                                        A(\alpha) = k_1A(\alpha_1) + ... +k_nA(\alpha_n)

两个运算:加法和数乘

前提条件:

A,B \in Hom(V,U) 规定:

        ① (A+B) \alpha := A\alpha + B\alpha, \forall \alpha \in V

        ② (kA) \alpha := k(A\alpha) , \forall \alpha \in V,k \in K

加法:

  • (A+B) \in Hom(V,U), kA \in Hom(V,U) 确保封闭性
  • 交换律:A+B = B+A,就是 (A+B)\alpha = A\alpha+B\alpha转为线性空间上的交换律 = (B+A)\alpha
  • 结合律:(A+B)+C = A+(B+C)
  • 有零元:\Theta \in Hom(V,U)
  • 有负元:-A\in Hom(V,U)

数乘:

  • 有1元素:1A = A
  • 结合律:(kl)A = k(lA)
  • 分配律:(k+l)A = kA+lA
  • 类比数因子分配律:k(A+B) = kA+kB
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值