免费在Kaggle上部署stable diffusion,白嫖万元 32G 双GPU

保姆级在Kaggle上部署stable diffusion,白嫖万元 32G 双GPU

最近爆火的AI绘画项目stable diffusion,免费开源,受到广大用户的喜爱,但是它对电脑显卡有很高的要求,自己想玩AI但是购买服务器又太贵,本文将告诉你一个免费部署的方法。 

 Kaggle注册

1、首先打开Kaggle官网: www.kaggle.com

02de4512646e0d91e5db8a506220a565.jpeg

可以使用国内邮箱账号注册

368ce0b35b09a8ff8bc348b8e706b5df.jpeg

发送邮箱验证,输入邮箱验证码

2c3879c92ce114eb73f14c6bfb886cca.jpeg

首先点击右上角的头像,进入设置

e5de68a66ae3e0f0336563154d9cbde0.jpeg

 如果需要使用GPU,需要手机进行验证,点击手机 96992ef8d482624df6182917a5fc6288.jpeg

使用你的手机号码进行校验

a7d917dc2bcc88ec9bf43106b45a4e91.jpeg

可以看到我们有30小时的gpu的使用时间,这个时间每周都会重置。平均每天4个小时对于普通人完全够用了。

293a2528c4e4d33125227b739fe7ed91.jpeg

我们点击code 搜索 sd kaggle webui codex

进入之后 点击 copy&Edit

按如图所示进行选择 选择GPUT4x2 ,开启联网

ddc1854dbad2975b37bacf8c13a57b60.jpeg

点击Run All

等待4~5分钟左右,当看到如下连接,说明已经部署成功了。

注意:当我们用完后,一定要记得点击右上角那个电源的图标将其关机,否则会一直消耗GPU时长。

我们点击ngrok的内网穿透链接,如果需要自己配置内网穿透,可以查看关于如何使用ngrok的内网穿透的文章

7433fee512cac3dd232774554d4395a9.jpeg

各种常用的插件,爆款提示词插件都已经内置了,抽卡来一张

c47fa6bb3a2f2703af390a5efe7d07ad.jpeg

可自行修改提示词,看看生成的效果。

<think>好的,用户问的是如何使用训练人工智能大模型。首先,我需要确定用户的具体需求。他们可能是一个刚开始学习AI的学生,或者是一个有一定经验但想深入了解大模型训练的人。也有可能他们想了解实际应用中的步骤,或者是想获取一些资源推荐。 接下来,我需要考虑用户可能的背景知识。如果他们提到“大模型”,可能已经对机器学习有一定了解,知道基础概念,比如神经网络、深度学习。但为了全面,我应该从基础步骤开始,同时涵盖一些高级内容,比如数据预处理、模型架构选择、分布式训练等。 然后,用户可能想知道整个流程的大致步骤,而不仅仅是理论。所以应该分步骤讲解,比如数据准备、模型设计、训练、评估和部署。同时,可能需要强调一些关键点,比如数据的重要性,计算资源的需求,以及调参的技巧。 另外,用户可能没有说出来的需求是实际应用中的挑战,比如需要大量的计算资源,或者处理数据时的具体问题。因此,在回答中应该提到这些实际问题,并给出一些解决方案,比如使用云服务或开源框架。 还要注意避免使用过于专业的术语,保持解释的易懂性。例如,解释分布式训练时,可以简单说明其目的是加速训练过程,而不是深入讲解技术细节。同时,提供一些资源链接,比如Hugging Face或TensorFlow,帮助用户进一步学习。 最后,确认回答结构清晰,逻辑连贯,覆盖从数据到部署的全流程,并给出实用建议,比如从小模型开始实践,逐步深入。这样用户既能理解整体流程,也能知道如何着手实践。</think>训练人工智能大模型是一个复杂且资源密集的过程,通常涉及以下几个关键步骤。以下是一个简化的流程概述: --- ### **1. 明确目标和任务** - **任务类型**:确定模型用途(如自然语言处理、图像生成、推荐系统等)。 - **模型类型**:选择适合任务的架构(如Transformer、CNN、扩散模型等)。 - **性能指标**:定义评估标准(如准确率、生成质量、推理速度等)。 --- ### **2. 数据准备** - **数据收集**:获取大规模、高质量的训练数据(文本、图像、视频等)。 - 公开数据集(如Wikipedia、Common Crawl、ImageNet)。 - 业务场景的私有数据(需清洗和去敏感信息)。 - **数据预处理**: - 清洗(去噪、去重、纠错)。 - 标注(监督学习需人工或半自动标注)。 - 分词/向量化(如文本转换为Token,图像归一化)。 - **数据划分**:分为训练集、验证集和测试集。 --- ### **3. 模型设计与初始化** - **选择架构**: - **NLP任务**:Transformer(如GPT、BERT、T5)。 - **视觉任务**:ViT(Vision Transformer)、扩散模型(如Stable Diffusion)。 - **参数规模**:根据计算资源决定模型参数量(如千亿参数的GPT-4)。 - **初始化策略**:使用预训练权重(迁移学习)或随机初始化。 --- ### **4. 训练过程** - **硬件资源**: - 使用GPU集群(如NVIDIA A100/H100)或TPU进行分布式训练。 - 云计算服务(如AWS、Google Cloud、阿里云)提供弹性算力。 - **分布式训练技术**: - 数据并行(Data Parallelism):拆分数据到多卡。 - 模型并行(Model Parallelism):拆分模型到多卡。 - 混合并行(如Megatron-LM、DeepSpeed框架)。 - **优化策略**: - 优化器选择:AdamW、LAMB等。 - 学习率调度:动态调整学习率(如Warmup、Cosine衰减)。 - 正则化:Dropout、权重衰减、梯度裁剪。 - **监控与调试**: - 跟踪损失函数、准确率等指标。 - 使用TensorBoard、WandB等工具可视化训练过程。 --- ### **5. 微调与评估** - **微调(Fine-tuning)**: - 在特定任务的小规模数据上进一步训练预训练模型。 - 调整超参数(如学习率、批次大小)。 - **评估与测试**: - 在验证集和测试集上验证泛化能力。 - 使用任务相关指标(如BLEU、ROUGE、F1分数)。 --- ### **6. 部署与应用** - **模型压缩**: - 量化(降低精度,如FP32→FP16/INT8)。 - 剪枝(移除冗余参数)。 - 蒸馏(用大模型训练小模型)。 - **推理优化**: - 使用推理框架(如TensorRT、ONNX Runtime)。 - 部署到云服务、边缘设备或API接口。 - **持续迭代**: - 根据用户反馈更新数据和模型。 --- ### **7. 关键挑战** - **算力成本**:训练千亿级模型需数百万美元算力。 - **数据质量**:数据偏差可能影响模型公平性。 - **伦理与安全**:需解决生成内容的合规性(如版权、有害信息过滤)。 --- ### **入门建议** - **学习资源**: - 框架:PyTorch、TensorFlow、Hugging Face库。 - 课程:吴恩达《深度学习专项》、李沐《动手学深度学习》。 - **实践路径**: - 从小模型开始(如BERT-base、ResNet),逐步深入。 - 使用开源代码(如Meta的LLaMA、Stable Diffusion)。 - 参与Kaggle竞赛或开源项目积累经验。 --- 如果需要更具体的指导(如代码示例或工具推荐),可以进一步说明任务场景哦!
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值