[目标检测知识蒸馏2] [CVPR19] Distilling Object Detectors with Fine-grained Feature Imitation

本文介绍了一种基于知识蒸馏的目标检测方法FGFI,该方法在Faster R-CNN的基础上,通过从教师网络中仅传递目标附近的有用信息到学生网络来提升轻量化网络的性能。实验表明,此方法在VGG11上相比基线提升了15%。

[CVPR19] Distilling Object Detectors with Fine-grained Feature Imitation

Introduction:

在 Faster RCNN 基础上使用知识蒸馏改进轻量级网络性能,其核心思想是 teacher 网络中需要传递给 student 网络的应该是有效信息,而非无效的 background 信息。

FGFI 利用fine-grained feature limitation,只对 gt 附近的 anchor 进行蒸馏(不是对整个 feature map 做的 hint learning)。具体来说,将 backbone 输出特征图与 RPN 网络输出结果进行组合,得到 student 网络应该学习的特征,用来指导其产生对应的分布。在 VGG11上实现了相对 baseline 15%的提升。
在这里插入图片描述

Fine-Gained区域提取

上图中的红色和绿色边界框是在相应位置上的锚框( anchor boxes)。红色 anchor 表示与 gt 的边界框重叠最大,绿色 anchor 表示附近的物体样本。
在这里插入图片描述

对于 backbone 输出的特征图,假设其大小为 W∗HW ∗ HWH ,网络中使用的 anchor 数量为 KKK ,对于 fine-Gained 区域的提取步骤可以归纳如下(上图中的右边所示):

  1. 对于给定的特征图,按照设置好的 anchor 信息,生成 W∗H∗KW ∗ H ∗ KWHK 个框,将这些框与 gt 计算 IoU 值 mmm
  2. 选择最大的 IoU 值 M=max(m)M=\text{max}(m)M=max(m)。引入参数阈值因子 Ψ∈[0,1]\Psi \in[0, 1]Ψ[0,1] ,计算得到滤波阈值 F=Ψ∗MF = \Psi ∗ MF=ΨM
  3. 利用 FFF 进行对 IoU map 过滤,保留大于 FFF 的位置:W×HW\times HW×H mask;
  4. 循环遍历所有 gt box 并保留 mask,得到 fine-grained imitation mask 掩码 III

Feature adaptation:a full conv adaptation layer.

Fine-grained feature imitation

通过最小化如下 loss 实现对 student 网络的训练:
l=∑c=1C(fadap(s)ijc−tijc)2 l=\sum^C_{c=1}(f_{adap}(s)_{ijc}-t_{ijc})^2 l=c=1C(fadap(s)ijctijc)2
其中,sss 为学生网络的 feature map,ttt 为对应的教师网络特征图。对于 W×HW\times HW×H 的特征图上的每个接近目标的 anchor 位置,学习教师检测模型的知识。连同所有估计 anchor 位置,蒸馏目标是最小化:
Limitation=12NP∑i=1W∑j=1H∑c=1CIij(fadap(s)ijc−tijc)2 L_{imitation}=\frac{1}{2N_P}\sum^W_{i=1}\sum^H_{j=1}\sum^C_{c=1}I_{ij}(f_{adap}(s)_{ijc}-t_{ijc})^2\\ Limitation=2NP1i=1Wj=1Hc=1CIij(fadap(s)ijctijc)2
其中 Np=∑i=1W∑j=1HIijN_p=\sum^W_{i=1}\sum^H_{j=1}I_{ij}Np=i=1Wj=1HIij 是 MASK 中的正例数量,fadapf_{adap}fadap 为适配函数。

学生模型的总体训练损失为:
L=Lgt+λLimitation L=L_{gt}+\lambda L_{imitation} L=Lgt+λLimitation

Experiment

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值