import torch
import torch.nn as nn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import torch.nn.functional as F
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
data=pd.read_csv(r'D:/pycharmworkspace/ISLR-master/HR.csv')
#get_dummies将data里的salary数据置换成独热编码
#data.join将转换成独热编码的数据加入数据中
data=data.join(pd.get_dummies(data.salary))
#删除原来的salary数据
del data['salary']
data=data.join(pd.get_dummies(data.part))
del data['part']
batch = 64
no_of_batches = len(data)//batch
epochs = 1000
#14999行数据 11428不离职 3571离职 11428/14999=0.76 故模型准确率一定要比0.76高
Y_data = data.left.values.reshape(-1,1)
Y = torch.from_numpy(Y_data).type(torch.float32)
#列表推导式 如果data.columns所有列当中,如果这个列不等于'left'就返回
X_data = data[[c for c in data.columns if c !='left']].values
X = torch.from_numpy(X_data).type(torch.floa
基于pytorch多层感知器预测是否离职
最新推荐文章于 2023-04-06 16:07:13 发布
本文介绍了如何运用PyTorch构建一个多层感知器模型,以预测员工是否可能离职。通过训练数据集,模型学习并分析员工特征,以提高预测准确性。
摘要由CSDN通过智能技术生成