Task1 赛题理解---学习笔记

网络模型

使用resnet18网络模型,进行迁移学习,保留resnet18网络的卷积网络部分,并保留预训练参数,另外设置5个全连阶层,分别对应5个可能的街道字符的识别,代码如下:
model_conv = models.resnet18(pretrained=True)
model_conv.avgpool = nn.AdaptiveAvgPool2d(1)
model_conv = nn.Sequential(*list(model_conv.children())[:-1])
self.cnn = model_conv

    self.fc1 = nn.Linear(512,11)
    self.fc2 = nn.Linear(512,11)
    self.fc3 = nn.Linear(512,11)
    self.fc4 = nn.Linear(512,11)
    self.fc5 = nn.Linear(512,11)
优化器

使用了Adam优化,学习率0.001.
torch.optim.Adam(model.parameters(),0.001)

损失函数

使用交叉熵损失函数
nn.CrossEntropyLoss()

图像增广

训练集的数据图像统一缩放为(64,128),并进行了随机裁减、色彩调节、随机旋转、数据正则化处理,验证集数据图像统一缩放为(60,120),只进行了正则化处理。

训练结果

在本机的GPU(GeForce RTX 2080)上运行了3个epoch,识别率达到0.45,运行结果如下图:
在这里插入图片描述

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值