大数据挖掘更多时间都在于清洗数据

初学者在大数据挖掘中往往花费大量时间进行数据清洗。理解大数据的内涵并掌握正确的学习路径至关重要。加入专业学习社群,获取大数据零基础到进阶实战资料,由清华大学讲师指导,分享全面的大数据高端实战学习体系。
摘要由CSDN通过智能技术生成
一、数据清洗的那些事

构建业务模型,在确定特征向量以后,都需要准备特征数据在线下进行训练、验证和测试。同样,部署发布离线场景模型,也需要每天定时跑P加工模型特征表。

而这一切要做的事,都离不开数据清洗,业内话来说,也就是ETL处理(抽取Extract、转换Transform、加载Load),三大法宝。

很多初学者,对大数据的概念都是模糊不清的,大数据是什么,能做什么,学的时候,该按照什么线路去学习,学完往哪方面发展,想深入了解,想学习的同学欢迎加入大数据学习企鹅群:458345782,有大量干货(零基础以及进阶的经典实战)分享给大家,并且有清华大学毕业的资深大数据讲师给大家免费授课,给大家分享目前国内最完整的大数据高端实战实用学习流程体系。

来自于百度百科

大数据圈里和圈外,很多朋友都整理过数据,我们这里称为清洗数据。

不管你是叱咤风云的Excel大牛,还是玩转SQL的数据库的能人,甚至是专注HQL开发ETL工程师,以及用MapReduce\Scala语言处理复杂数据的程序猿。(也许你就是小白一个)

我想说的是,解决问题的技术有高低,但是解决问题的初衷只有一个——把杂乱的数据清洗干净,让业务模型能够输入高质量的数据源。

不过,既然做的是大数据挖掘,面对的至少是G级别的数据量(包括用户基本数据、行为数据、交易数据、资金流数据以及第三方数据等等)。那么选择正确的方式来清洗特征数据就极为重要,除了让你事半功倍,还至少能够保证你在方案上是可行的。

二、大数据的必杀技

在大数据生态圈里,有着很多开源的数据ETL工具,每一种都私下尝尝鲜也可以。但是对于一个公司内部来说,稳定性、安全性和成本都是必须考虑的。

就拿Spark Hive和Hive来说,同样是在Yarn上来跑P,而且替换任务的执行引擎也很方便。

修改任务执行引擎

的确,Spark的大多数任务都会比MapReduce执行效率要快差不多1/3时间。但是,Spark对内存的消耗是很大的,在程序运行期间,每个节点的负载都很高,队列资源消耗很多。因此,我每次提交Spark离线模型跑任务时,都必须设置下面的参数,防止占用完集群所有资源。

spark-submit --master yarn-cluster --driver-memory 5g --executor-memory 2g --num-executors 20

其中:

  • driver-memory是用于设置Driver进程的内存,一般不设置,或者1G。我这里调整到5G是因为RDD的数据全部拉取到Driver上进行处理,那要确保Driver的内存足够大,否则会出现OOM内存溢出。
  • executor-memory是用于设置每个Executor进程的内存。Executor内存的大小决定了Spark作业的性能。
  • num-executors是用于设置Spark作业总共要用多少个Executor进程来执行。这个参数如果不设置,默认启动少量的Executor进程,会很大程度影响任务执行效率。

单独的提交Spark任务,优化参数还可以解决大部分运行问题。但是完全替换每天跑P加工报表的执行引擎,从MapReduce到Spark,总会遇到不少意想不到的问题。对于一个大数据部门而言,另可效率有所延迟,但是数据稳定性是重中之重。

Spark运行Stage

所以,大部分数据处理,甚至是业务场景模型每天的数据清洗加工,都会优先考虑Hive基于MapRedcue的执行引擎,少部分会单独使用编写MapReduce、Spark程序来进行复杂处理。

三、实践中的数据清洗

这节要介绍的内容其实很多,单独对于Hive这方面,就包括执行计划、常用写法、内置函数、一些自定义函数,以及优化策略等等。

幸运的是,这方面资源在网上很全,这是一个值得欣慰的点,基本遇到的大多数问题都能够搜到满意答案。

因此,文章这个版块主要顺着这条主线来——&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值