python字典为什么至少需要哈希表的三分之一的行留空

Python 字典(dict)的底层实现是基于 哈希表 的。在哈希表中,哈希冲突性能优化 是非常重要的问题。为了保证字典在插入、查找、删除操作时的高效性,Python 设计了一个规则,即字典的哈希表中至少要有三分之一的空间是空的。这背后主要有以下几个原因:

1. 避免哈希冲突

哈希表的工作原理是通过哈希函数将键映射到表中的某个位置(槽位)。理想情况下,不同的键应该映射到不同的槽位。然而,在实际中,哈希函数可能会将多个不同的键映射到同一个槽位,这就是所谓的 哈希冲突

  • 当哈希表中槽位过于拥挤时,哈希冲突的概率大大增加。
  • 每次发生冲突时,Python 会采用开放寻址法(open addressing),也就是通过某种算法查找下一个空闲的槽位。
  • 如果表中大多数槽位都被占用了,那么寻找空槽位的操作会变得非常耗时,从而影响字典的性能。

通过保留一定的空槽位,可以大幅减少冲突次数,从而提高查找和插入的速度。

2. 提升查找和插入的效率

字典操作(如查找、插入和删除)的时间复杂度期望为 O(1)。这是因为哈希表的设计可以让键在常数时间内被映射到一个槽位。然而,当哈希表接近满时:

  • 每次查找空闲槽位的平均时间会变长(因为需要线性探测或某种探测方式)。
  • 插入新键的时间也会增加,因为哈希冲突的处理会耗费额外时间。

为了避免哈希表在使用时变得拥挤,Python 保证哈希表的负载因子不会超过 2/3,这就意味着至少三分之一的槽位是空的,从而保证字典操作的高效性。

3. 降低表的扩展频率

哈希表需要扩展时,所有现有的键值对必须重新计算哈希并放入新的、更大的表中。这一过程称为 rehashing,它是一个相对昂贵的操作。

如果哈希表填满得过快(例如槽位利用率接近 100%),则系统需要频繁扩展哈希表。为了降低扩展的频率,Python 设计哈希表时预留了一定的空间,避免过早触发扩展。

因此,通过保持哈希表中至少三分之一的行为空的,Python 减少了哈希表的扩展次数,避免频繁 rehashing 操作。

4. 内存与性能的权衡

虽然预留哈希表的空间会占用额外的内存,但这种内存的额外开销是可以接受的,尤其是在现代计算机的内存资源通常比较充足的情况下。相对地,保证字典操作的高效性(如查找和插入的 O(1) 复杂度)对于性能至关重要。

5. 类似的设计思想

在 Python 中,除了字典(dict)使用了空间换时间的设计思想,许多其他的内建数据结构和模块也使用了类似的设计思路,以提高操作效率。下面是一些使用了类似思想的例子:

列表(list)动态扩展
Python 中的列表(list)是动态数组,底层实现类似于 C 语言中的动态数组。Python 为了提高列表的操作效率,特别是在列表扩展时,采取了一种预分配空间的策略。

设计思想
当列表需要扩展时,Python 并不会每次都精确地增加所需的内存,而是会预分配额外的空间。这样,当你不断向列表中追加元素时,不需要频繁重新分配内存,从而提高性能。

具体实现
列表一旦达到容量上限并需要扩展,Python 会分配一个比当前容量更大的新数组,通常是按一定倍数增长,然后将现有的元素复制过去。
这种策略避免了在每次插入新元素时都进行重新分配和复制,减少了重新分配的次数。
优点
提升 append 操作的效率,平均时间复杂度为 O(1),虽然偶尔会有较慢的重新分配和复制操作,但通过预分配可以使这些开销摊薄。
内存和性能权衡
虽然预分配多余的空间会浪费一些内存,但这换来了性能的提升,特别是在大量追加操作的情况下。

集合(set)和冻结集合(frozenset)
集合(set)和字典类似,底层也是基于哈希表实现的,因此它们也采用了类似字典的设计,至少预留三分之一的空间以减少哈希冲突。

设计思想
集合中的元素是无序且唯一的,当插入、删除或查找元素时,Python 使用哈希表来进行这些操作。
通过预留空间和处理冲突的方法,set 的查找、插入和删除操作的时间复杂度为 O(1),这与字典的性能非常接近。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值