HDU 3549 Flow Problem(最大流)

题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=3549
题目大意:题目就是告诉你点和边的数量n和m,然后就是每条边连接的两个点和值,要你求出从1到n的最大流

递归版:

#include <cstdio>
#include <queue>
#include <cstring>
#include <vector>
using namespace std;
const int maxv = 20;
const long long INF = 0x3f3f3f;
struct Edge
{
    int from, to, cap, flow;
    Edge() {}
    Edge(int from, int to, int cap, int flow)
    {
        this->from = from;
        this->to = to;
        this->cap = cap;
        this->flow = flow;
    }
};
struct Dinic
{
    int n, m, s, t;
    vector<Edge> edges;
    vector<int> G[maxv];
    bool vis[maxv];
    int d[maxv];
    int cur[maxv];
    void AddEdge(int from, int to, int cap)
    {
        edges.push_back(Edge(from, to, cap, 0));
        edges.push_back(Edge(to, from, 0, 0));
        m = edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }
    bool BFS()
    {
        memset(vis, 0, sizeof(vis));
        queue<int>Q;
        Q.push(s);
        d[s] = 0;
        vis[s] = 1;
        while (!Q.empty())
        {
            int x = Q.front();
            Q.pop();
            for (int i = 0; i < (int)G[x].size(); i++)
            {
                Edge& e = edges[G[x][i]];
                if (!vis[e.to] && e.cap > e.flow)
                {
                    vis[e.to] = 1;
                    d[e.to] = d[x] + 1;
                    Q.push(e.to);
                }
            }
        }
        return vis[t];
    }
    int DFS(int x, int a)
    {
        if (x == t || a == 0) return a;
        int flow = 0, f;
        for (int& i = cur[x]; i < (int)G[x].size(); i++)
        {
            Edge& e = edges[G[x][i]];
            if (d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap-e.flow))) > 0)
            {
                e.flow += f;
                edges[G[x][i]^1].flow -= f;
                flow += f;
                a -= f;
                if (a == 0) break;
            }
        }
        return flow;
    }
    int Maxflow(int s, int t)
    {
        this -> s = s;
        this -> t = t;
        int flow = 0;
        while (BFS())
        {
            memset(cur, 0, sizeof(cur));
            flow += DFS(s, INF);
        }
        return flow;
    }
};
int main()
{
    int n, m, u, v, c, i, t;
    scanf("%d", &t);
    for (int ii = 1; ii <= t; ii++)
    {
        Dinic H;
        scanf("%d%d", &n, &m);
        for(i=1; i<=m; ++i)
        {
            scanf("%d%d%d", &u, &v, &c);
            H.AddEdge(u, v, c);
        }
        printf("Case %d: %d\n", ii, H.Maxflow(1, n));
    }
    return 0;
}

非递归版:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 405;
const int maxm = maxn * maxn;
const int inf = 1000000000;
class Dinic
{
public :
    struct Node
    {
        int u, v, f, next;
    } e[maxm];

    int head[maxn], p, lev[maxn], cur[maxn];
    int que[maxm];
    void init()
    {
        p = 0;
        memset(head, -1, sizeof(head));
    }
    void add(int u, int v, int f)
    {
        e[p].u = u;
        e[p].v = v;
        e[p].f = f;
        e[p].next = head[u];
        head[u] = p++;
        e[p].u = v;
        e[p].v = u;
        e[p].f = 0;
        e[p].next = head[v];
        head[v] = p++;
    }
    bool bfs(int s, int t)
    {
        int u, v, qin = 0, qout = 0;
        memset(lev, 0, sizeof(lev));
        lev[s] = 1;
        que[qin++] = s;
        while(qout != qin)
        {
            u = que[qout++];
            for(int i = head[u]; i != -1; i = e[i].next)
            {
                if(e[i].f > 0 && !lev[v = e[i].v])
                {
                    lev[v] = lev[u] + 1, que[qin++] = v;
                    if(v == t) return 1;
                }
            }
        }
        return 0;
    }
    int dfs(int s, int t)
    {
        int i, f, qin, u, k;
        int flow = 0;
        while(bfs(s, t))
        {
            memcpy(cur, head, sizeof(head));
            u = s, qin = 0;
            while(1)
            {
                if(u == t)
                {
                    for(k = 0, f = inf; k < qin; k++)
                        if(e[que[k]].f < f) f = e[que[i=k]].f;
                    for(k = 0; k < qin; k++)
                        e[que[k]].f -= f, e[que[k]^1].f += f;
                    flow += f, u = e[que[qin = i]].u;
                }
                for(i = cur[u]; cur[u] != -1; i = cur[u] = e[cur[u]].next)
                    if(e[i].f > 0 && lev[u] + 1 == lev[e[i].v]) break;
                if(cur[u] != -1)
                    que[qin++] = cur[u], u = e[cur[u]].v;
                else
                {
                    if(qin == 0) break;
                    lev[u] = -1, u = e[que[--qin]].u;
                }
            }
        }
        return flow;
    }
} H;
int main()
{
    int n, m, u, v, c, i, t;
    scanf("%d", &t);
    for (int ii = 1; ii <= t; ii++)
    {
        H.init();
        scanf("%d%d", &n, &m);
        for(i=1; i<=m; ++i)
        {
            scanf("%d%d%d", &u, &v, &c);
            H.add(u, v, c);
        }
        printf("Case %d: %d\n", ii, H.dfs(1, n));
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值