【Python机器学习】K-Means、DBSCAN、GMM三种聚类的对比演示(附源码)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

下面给出一个从多方面综合分析划分聚类,密度聚类和模型聚类。以及聚类算法内部评价指标的示例,该示例先生成三种二维平面上的实验数据和一种高维空间中的实验数据,然后分别用kmeans,DBSCAN,GaussianMixture三种算法对它们进行聚类,并计算SC DBI CH ZQ四个指标,展示实验样本点的分布与聚类算法实用性,评价指标值有效性的关系。

三种二维平面上的实验样本图如下,它们分别是圆环,高斯分布和月牙形状的,由datasets模块中响应的函数产生

高维空间中的实验样本通过PCA降维后,在二维平面上的分布如下所示,它是由datasets模块中的make_gaussian_quantiles()函数在四维空间中以原点为中心,按高斯分布随机产生的,由内向外分为9层的类球状分布,随后去掉1-6层和第8层,只保留内核的第0层和外面的第7层,可以将此数据想象成一个带核的空心四维类球体

 

三种聚类算法的结果以及指标值对比如下图所示

 

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

showswoller

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值