【数据挖掘】关联模式评估方法及Apriori算法超市购物应用实战(超详细 附源码)

文章介绍了关联规则挖掘的基本概念,如支持度和置信度,并指出它们不足以过滤所有无趣规则。提到了提升度和卡方检验作为增强过滤的方法。文章通过Python的apyori库展示了Apriori算法的应用,同时提及mlxtend库作为scikit-learn的补充,用于频繁项集和关联规则挖掘。示例代码演示了如何使用这两个库进行数据处理和挖掘。
摘要由CSDN通过智能技术生成

需要源码请点赞关注收藏后评论区留言私信~~~

大部分关联规则挖掘算法都使用支持度-置信度框架。尽管最小支持度和置信度阈值可以排除大量无趣规则的探查,但仍然会有一些用户不感兴趣的规则存在。当使用低支持度阈值挖掘或挖掘长模式时,这种情况尤为严重

强关联规则不一定是有趣的,并且只有用户才能够评判一个给定的规则是否有趣

从关联分析到相关分析

由于支持度和置信度还不足以过滤掉无趣的关联规则,因此,可以使用相关性度量来扩展关联规则的支持度-置信度框架。相关规则框架为:

 

1:提升度

 2:使用卡方进行检验

 Apriori算法应用

在Pyhton中进行关联规则挖掘时需要用到apyori包,apyori包的安装方式为:

pip install apyori

首先导入包和相关数据 输出部分数据如下图所示

接着获取项集

 

返回结果result中的属性说明:

items – 项集,

frozenset对象,

可迭代取出子集;

support – 支持度,

float类型;

confidence – 置信度或可信度,

float类型;

ordered_statistics – 存在的关联规则,可迭代,迭代后

其元素的属性: items_base – 关联规则中的分母项集; confidence – 上面的分母规则所对应的关联规则的可信度 

进行关联规则挖掘 输出如下

显示挖掘的关联规则 输出如下

 

部分代码如下

import pandas as pd
from apyori import apriori
df = pd.read_excel("data.xls")
df.head()
min_supp = 0.1  
min_conf = 0.1  
min_lift = 0.1  
result = list(apriori(transactions=transactions, min_support=min_supp, 
           min_confidence=min_conf, min_lift=min_lift))
result
supports=[]
confidences=[]
lifts=[]
bases=[]
adds=[]
for r in result:
    for x in r.ordered_statistics:
        supports.append(r.support)
        confidences.append(x.confidence)
        lifts.append(x.lift)
        bases.append(list(x.items_base))
        adds.append(list(x.items_add))
resultshow = pd.DataFrame({
    'support':supports,
    'confidence':confidences,
    'lift':lifts,
    'base':bases,
    'add':adds})

Apriori算法应用2

关联规则目前在scikit-learn中并没有实现

机器学习扩展库mlxtend

是一款高级的机器学习扩展库,可用于日常机器学习任务的主要工具,也可以作为sklearn的一个补充和辅助工具

mlxtend提供了多种分类和回归算法api,包括多层感知机、stacking分类器、逻辑回归等

使用如下命令安装

pip install mlxtend

 我们以超市购物为场景来进行算法应用 计算频繁项集结果如下

结果如下

可见不同商品之间的组合关联程度不同 商家可以根据这个来调整货物的摆放

 部分代码如下

mport pandas as pd
item_list = [['牛奶','面包'],
    ['面包','尿布','啤酒','土豆'],
    ['牛奶','尿布','啤酒','可乐'],
    me(item_list)
# from mlxtend.preprocessing import TransactionEncode
import mlxtend
te = mlxtend.preprocessing.TransactionEncoder()
df_tf = te.fit_transform(item_list)
df = pd.DataFrame(df_tf,columns=te.columns_)
display(df)
计算频繁项集
from mlxtend.frequent_patterns import apriori

# use_colnames=True表示使用元素名字,默认的False使用列名代表元素frequent_itemsets = apriori(df, min_support=0.05, use_colnames=True)

frequent_itemsets.sort_values(by='support', ascending=False, inplace=True)

# 选择2频繁项集
print(frequent_itemsets[frequent_itemsets.itemsets.apply(lambd

总结 

 关联分析是数据挖掘体系中重要的组成部分之一,其代表性的案例即为“购物篮分析”,即通过搜索经常在一起购买的商品的集合,研究顾客的购买习惯

关联规则挖掘的过程主要包含两个阶段。第一阶段必须先从事务数据集中找出所有的频繁项,第二阶段再由这些频繁项产生强关联规则。这些规则满足最小支持度和最小置信度阈值

频繁项集的挖掘方法主要有Apriori算法、基于频繁模式增长算法如FP-Growth以及利用垂直数据格式的算法

Apriori算法是最早出现的关联规则挖掘算法。它利用逐层搜索的迭代方法找出事务集中项集的关系,并形成关联规则。Apriori算法利用了“频繁项集的所有非空子集也是频繁的”这一先验性质,迭代对k项频繁集连接生成k+1项候选集并进行剪枝,得到k+1项频繁集。最后利用频繁项集构造满足最小支持度和最小置信度的规则

创作不易 觉得有帮助请点赞关注收藏~~~

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

showswoller

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值