Pattern Evaluation简介
模式评估指的是根据某种兴趣度度量,识别代表知识的真正有趣的模式。
我们之前通过support-confidence association rule mining framework得到的强规则不一定是有趣的,所以它不足以进行模式评估,甚至在一些情况下,甚至常用的lift和chi-square measures也没有很好的效果。
这里将介绍模式或规则评估中——兴趣的概念,展示null-invariance的重要性,并比较多个兴趣度测量。
基本概念
什么样的模式是有趣的
一个模式是有趣的(interesting),则它具有以下几个特征:
- 易于被人理解
- 在某种确信度上,对于新的或检验数据是有效的
- 是潜在有用的
- 是新颖的
如果一个模式证实了用户寻求证实的某种假设,则它是有趣的。有趣的模式代表知识,可以用于决策。
模式兴趣度的两种度量
- 客观度量
- 这个度量方法基于所发现模式的结构和关于它们的统计量。
- 对于形如 x→y 的关联规则,一种客观度量是规则的支持度(support),表示事务数据库中满足规则的事务所占的百分比。
- 另一种客观度量是置信度(confidence),它评估所发现的规则的确信程度。
- 关联规则的一般地,每个兴趣度度量都与一个阈值相关联,该阈值可以由用户控制。
- 主观独立
- 主观兴趣度度量基于用户对数据的期望。
- 这种度量发现模式是有趣的,如果它们是出乎意料的(与用户的期望相矛盾),或者提供用户可以采取行动的至关重要的信息。在后一种情况下,这样的模式称为可行动的(actionable)。
- 意料之内的模式也可能是有趣的,如果它们证实了用户希望证实的假设,或与用户的预感相似。
- 其他兴趣度度量包括分类(IF-THEN)规则的准确率和覆盖率。
注意:在这里我多说一句,在我上了PDDM的课程之后,我也没有太明白韩家炜教授说的这些是啥意思。很多概念都不是很清楚,所以建议如果有可能大家可以先去看一些关于数据挖掘的基础课。因为一直搜不到关于模式评估的资料,所以在我明确地知道这些概念之前,我还一直以为Pattern Evaluation是模型评估。
支持置信框架的局限性
play−basketball→eat−cereal [40%, 66.7%]
¬play−basketball→eat−cereal [35%, 87.5%]
如果仅仅依靠支持置信框架得出的关联规则,我们就不能轻易地得出一个确切的结论。这就是支持置信框架的局限性。
Lift和Chi-Square Measures
Lift
Lift 是用于判断事件的独立与相关性的,在一定程度上非常类似概率论中证明两个事件独立性的方法。其具体定义如下: