网络结构非常简单,使用了FPN的结构融合了低层和高层的信息,低层信息是非常有必要的对于感兴趣的目标的空间定位,高层的卷积层在特征图上虽然具有低的空间分辨率,但是它们有更大的感受野,提供上下文信息提升分类的准确性。FPN对球的检测任务十分关键,使用大的感受野和高分辨率的特征能提升球检测的难区分度。
Loss的设计
本文主要计算三种损失:球的分类损失,球员的分类损失以及球员的回归框损失。
球的分类损失是一个2分类交叉熵损失,loss计算为:
网络结构非常简单,使用了FPN的结构融合了低层和高层的信息,低层信息是非常有必要的对于感兴趣的目标的空间定位,高层的卷积层在特征图上虽然具有低的空间分辨率,但是它们有更大的感受野,提供上下文信息提升分类的准确性。FPN对球的检测任务十分关键,使用大的感受野和高分辨率的特征能提升球检测的难区分度。
Loss的设计
本文主要计算三种损失:球的分类损失,球员的分类损失以及球员的回归框损失。
球的分类损失是一个2分类交叉熵损失,loss计算为: