footandball小目标检测

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
网络结构非常简单,使用了FPN的结构融合了低层和高层的信息,低层信息是非常有必要的对于感兴趣的目标的空间定位,高层的卷积层在特征图上虽然具有低的空间分辨率,但是它们有更大的感受野,提供上下文信息提升分类的准确性。FPN对球的检测任务十分关键,使用大的感受野和高分辨率的特征能提升球检测的难区分度。
Loss的设计
本文主要计算三种损失:球的分类损失,球员的分类损失以及球员的回归框损失。
球的分类损失是一个2分类交叉熵损失,loss计算为:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值