问题描述
X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。
地宫的入口在左上角,出口在右下角。
小明被带到地宫的入口,国王要求他只能向右或向下行走。
走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。
当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。
请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。
输入格式
输入一行3个整数,用空格分开:n m k (1<=n,m<=50, 1<=k<=12)
接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值
输出格式
要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。
样例输入
2 2 2
1 2
2 1
样例输出
2
样例输入
2 3 2
1 2 3
2 1 5
样例输出
14
记忆化搜索
AC的C++程序如下:
#include<iostream>
#include<cstring>
#include<string>
using namespace std;
int a[55][55];
int n,m,k;
int visit[55][55][15][15];//visit[x][y][i][j]表示在x,y坐标下拥有i件物品,最大价值是j的情况下的方案数
const int mod=1000000007;
int dfs(int x,int y,int sum,int maxn)
{
if(visit[x][y][sum][maxn+1]!=-1) //maxn初值为-1.无法表示visit的下标,所以visit数组的每个maxn都+1.
{
return visit[x][y][sum][maxn+1]; //记忆化搜索
}
long long s=0;
if(x==n&&y==m)
{
if(sum==k||sum==k-1&&maxn<a[x][y])
{
visit[x][y][sum][maxn+1]=1;
return 1;
}
else
{
visit[x][y][sum][maxn+1]=0;
return 0;
}
}
if(x<n)//可以向右走
{
if(maxn<a[x][y])
{
s+=dfs(x+1,y,sum+1,a[x][y]);
s%=mod;
}
s+=dfs(x+1,y,sum,maxn);
s%=mod;
}
if(y<m) //可以向下走
{
if(maxn<a[x][y])
{
s+=dfs(x,y+1,sum+1,a[x][y]);
s%=mod;
}
s+=dfs(x,y+1,sum,maxn);
s%=mod;
}
return visit[x][y][sum][maxn+1]=s%mod;
}
int main()
{
cin>>n>>m>>k;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
cin>>a[i][j];
}
}
memset(visit,-1,sizeof(visit));
cout<<dfs(1,1,0,-1)<<endl;
}