实数和数列极限

实数和数列极限

1-1 数轴

定义数轴

数轴是一条有向直线

​ 取定数轴上某一点为原点、在该点右方的直线上,隔任意长度取一点,记该点为一个单位,即为数轴上 1 1 1的位置。这段距离为单位长度。

定义开区间

用不等关系和数轴来定义开区间。设有不等式
a < x < b a<x<b a<x<b
该不等式确定了一个集合,该集合中元素X满足条件:位于a的右边并且位于b的左边。在数轴上找到两点分别表示 a 、 b a、b ab,开区间即为:所有在 a a a右边并在 b b b左边的元素构成的集合。即上文我们定义的集合。

闭区间和半开半闭区间也能依靠不等关系和数轴类似定义。

定义绝对值

用数轴来定义绝对值

一个数的绝对值即为数轴上该数对应的点到原点的距离。

证明三角不等式:

对于任意实数 x 、 y x、y xy有:
− ∣ x ∣ ≤ x ≤ ∣ x ∣ -|x| \leq x \leq |x| xxx

− ∣ y ∣ ≤ y ≤ ∣ y ∣ -|y| \leq y \leq |y| yyy

两式相加得:
− ( ∣ x ∣ + ∣ y ∣ ) ≤ ( x + y ) ≤ ( ∣ x ∣ + ∣ y ∣ ) -(|x|+|y|) \leq (x+y) \leq (|x|+|y|) (x+y)(x+y)(x+y)
而此式即为
∣ x + y ∣ ≤ ∣ ∣ x ∣ + ∣ y ∣ ∣ |x+y| \leq ||x|+|y|| x+yx+y
的展开式。

证毕

数轴与有理数

我们已知,有理数可表示为两个整数之商的形式
r = p q r= \frac{p}{q} r=qp
我们又知道,有理数经过加减乘除四则运算后,结果仍是有理数。故有理数对于四则运算是封闭的。由此可知,有理数构成一个数域。

但是,有理数对于乘方等运算并不封闭。
2 = 2 1 2 \sqrt{2}=2^{\frac{1}{2}} 2 =221
乘方运算的底数和幂均为有理数,但得到一无法用有理数表示的数。暂且不表。

对于每一个有理数,我们总能在数轴上找到表示它的点。

对于有理数

r = p q r=\frac{p}{q} r=qp
我们总能对数轴上的单位长度做 q q q等分,每份长度记做 l l l,因此,不难找出 p p p l l l长度的点所在的位置,该处点即为有理数 r r r在数轴上的位置。

论证有理数的稠密性 (新)

对于上述 p 、 q p、q pq,我们使 q q q固定,使 p p p取遍所有整数,即可作出无穷多个有理数,这无穷多个有理数将整个数轴分割。现任意作一实数 x x x,对于该实数 x x x,总能找到一个分割,使
p q ≤ x < p + 1 q \frac{p}{q} \leq x < \frac{p+1}{q} qpx<qp+1
两边同时减 p q \frac{p}{q} qp 得:
0 ≤ x − p q < 1 q 0 \leq x-\frac{p}{q} < \frac{1}{q} 0xqp<q1
而此式即为:
∣ x − p q ∣ < 1 q |x-\frac{p}{q}|<\frac{1}{q} xqp<q1
对于这个抽象的不等式,我们可以给出如下解释:

对于所有的实数 x x x,总可以找到一个有理数 p q \frac{p}{q} qp ,使得 x x x p q \frac{p}{q} qp 的值非常接近。因为 q q q是我们预先给定的,因此我们可以使这种接近程度变得非常大。

结论:每一个实数都能用有理数去逼近到任意精确的程度。有理数在数轴上是稠密的。

虽然有理数是稠密的,但是有理数并不能完全充满整个数轴。

图中x的长度在有理数范围中不可测量

有一论证:

设n ∈ N ∗ \in\mathbb{N^*} N n n n不是完全平方数,那么 n \sqrt{n} n 就不是有理数。

证明过程

结语:

数的产生和发展是由需要促成的,如果我们仅仅局限在有理数的范围之内,那么我们必须承认边长为 1 1 1的正方形的对角线是无法测量的。因此,我们必须扩展数域,引入无理数的概念。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值