数列极限的概念及性质

数列极限概念

数列

定义

如果按照某一法则, 对每一 nN+ ,对应着一个确定的实数 xn , 则得到一个序列。
这一序列叫做数列, 记为{ xn }, 其中第n项{ xn }叫做数列的一般项.

几何意义

数列{ xn }能看作数轴上的一个动点, 依次取数轴上的点 x1,x2,x3xn
这里写图片描述

数列与函数

数列{ xn }可以看作自变量为正整数n的函数:
xn=f(n),nN+

数列的极限

实例

圆的面积:
圆是曲边形,它的内接正多边形是直边形,二者有本质的区别.但是这个区别又不是绝对的,在一定条件下,圆的内接正多边形的面积能够转化成该圆面积.这个条件就是“当圆的内接正多边形的边数无限增加时”,注意其中“无限”二字。因此在无限过程中,直边形才能转化为曲边形,即在无限的过程中,由直边形的面积数列{Pn}得到了曲边形的面积, 如果仅停留在有限过程或没完没了的变化下去,人们永远也认识不了圆的面积,但是飞跃式的思维方法,不仅使人们看到数列{Pn}的变化是没完没了,永无终结的.同时它又使人们看到了无限变化过程中飞跃式的“终结”,从而人们也就认识了圆的面积。这就是极限的思想和方法在计算圆的面积上的应用。

根据以上的分析,圆的面积可以这样定义:若圆的内接正多边形的面积数列 { Pn } 稳定于某个数a(当n无限增大时),则称a是该圆的面积。

数列极限的通俗定义

当n无限增大时, 如果数列{ xn }的一般项 xn 无限接近于常数a, 则常数a称为数列{ xn }的极限, 或称数列{ xn }收敛于a, 记为

limnxn=a

  • 分析
    当n无限增大时, xn 无限接近于a .
    当n无限增大时, |xna| 无限接近于0 .
    当n无限增大时, |xna| 可以任意小, 要多小就能有多小.
    当n增大到一定程度以后, |xna| 能小于事先给定的任意小的正数.

因此, 如果 n 增大到一定程度以后, |xna| 能小于事先给定的任意小的正数, 则当n无限增大时, xn 无限接近于常数a.i

将” xn 无限接近于a“,数学符号化为“ ϵ>0|xna|<ϵ

将“ n 无限大时”,数学符号化为N,n>N

数列极限的定义

limnxn=aϵ>0NN+,s.t.n>N,|xna|<ϵ


    1. 此定义习惯上称为极限的 ϵN 定义,它用两个动态指标 ϵ N 刻画了极限的实质,用|xna|ϵ定量地刻画了 xn a 之间的距离任意小,即任给ϵ>0标志着“要多小”的要求,用 nN 表示 n 充分大。这个定义有三个要素:正数ϵ,正数 N ,不等式|xna|εnN
    2. 定义中的 ϵ 具有二重性:一是 ϵ 的任意性,二是 ϵ 的相对固定性。 ϵ 的二重性体现了 xn 逼近 a 时要经历一个无限的过程(这个无限过程通过ϵ的任意性来实现),但这个无限过程又要一步步地实现,而且每一步的变化都是有限的(这个有限的变化通过 ϵ 的相对固定性来实现)。
    3. 定义中的N是一个特定的项数,与给定的ε有关。重要的是它的存在性,它是在 ϵ 相对固定后才能确定的,且由 |xna|ϵ 来选定,一般说来, ϵ 越小, N 越大,但须注意,对于一个固定的ϵ,合乎定义要求的 N 不是唯一的。用定义验证xn a 为极限时,关键在于设法由给定的ϵ,求出一个相应的 N ,使当nN时,不等式 |xna|ϵ 成立。
    4. 定义中的不等式 |xna|εnN 是指下面
      一串不等式 |xN+1|<ϵ|xN+2|<ϵ|xN+3|<ϵ 。而对 |x1|<ϵ|x2|<ϵ|x3|<ϵ 不一定要求其成立。

数列极限的几何定义

ϵ>0NN+,s.t.n>N,|xna|<ϵϵ>0N使Naaϵa+ϵ

因而在这个领域之外至多能有数列中的有限个点
这里写图片描述
这就表明数列{ xn }所对应的点列除了前面有限个点外都能凝聚在点 a 的任意小邻域内,同时也表明数列{xn}中的项到一定程度时变化就很微小,呈现出一种稳定的状态,这种稳定的状态就是人们所称谓的“收敛”。

用极限定义证明极限的例题

1.求证

limnn+(1)n1n=1

证明
ϵ>0,N=[1ϵ]N+,n>N|xn1|=|n+(1)n1n1|=1n<ϵlimnn+(1)n1n=1

收敛数列的性质

四个法则

1.一个收敛数列的极限唯一。

证明:反证法。
假设{ xn }存在两个极限 a,b, a<b
ϵ<ba2,xn(aϵ,a+ϵ),xnxn(bϵ,b+ϵ)

2.收敛数列有界。
{an}m,MR,s.t.nN+,m<=xn<=M

证明:

limnxn=x,ϵ=1N,s.t.n>N,x1<xn<x+1N()

3.保序性:

limnan=a,limnbn=b,a<bN,s.t.n>N,an<bn

证明是显然的。
注意: N,s.t.n>N,an<bna<=b

4.夹逼性

{an}{bn}{cn}N,s.t.n>=N,an<=bn<=cnlimnan=limncn=Alimnbn=A

运算法则

limnan=Alimnan=B1.limn(αan+βbn)=A=αA+βB2.limn(αanβbn)=A=αAβB3.limn(anbn)=AB4.limnanbn=AB

例题:

1.求

limn(1+12+13++1n)1n

解:

1=11n<=(1+12+13++1n)1n<=n1nlimnn1n=1limn(1+12+13++1n)1n=1

上面的证明涉及证明

limnn1n=1

这里给出证明方法:

  • 二项式定理

    (a+b)n=r=0nCrnanrbrCrn=n!r!(nr)!

  • 证明:

    n1n>=1n1n=1+ynn=(1+yn)n=r=0nCrn1nryrn>1+n(n1)2y2nyn<(2n)12ϵN使yN<ϵN使yN<(2N)12<ϵn>N,yn<(2n)12<(2N)12<ϵ

2.求

limn(1112+n+1212+n++1n12+n)

解:
nn12+n<=(1112+n+1212+n++1n12+n)<=nn=1

limnnn12+n=limn11+n12=11+limnn12=1

所以
limn(1112+n+1212+n++1n12+n)=1

3.求

limn135(2n1)2462n

解:

0<135(2n1)2462n=13355(2n3)(2n1)2n12462n<(2n1)2n

易得

limn135(2n1)2462n=0

4.求

limnp1n(p>0)

解:
p=1limnp1n(p>0)=1p>1p1n>1p1n=1+yp=(1+y)n=r=0n1nryr>1+nyy<p1nlimnp1n(p>1)=1p<1p1n=11p1nlimn1p1n(1p>0)=1limnp1n(0<p<1)=1

综上
limnp1n=1(p>0)

5.求

limnn(n2+1n21)

解:
limnn(n2+1n21)=limn2nn2+1+n21=limn2n2+1+n21=1

单调有界定理

单调递增(递减)且有上界(下界)的数列必定收敛。
e.g.

limn(1+1n)n=elimnnsin180n

(证明略)

  • limn(1+12n)n=limn(1+12n)2n=limn(1+12n)2n=e

  • 1<=limn(1+1n2)n=limn(1+1n2)n2n<=limnen=1

  • limn(11n)n=limn(11+1n1)n=1e

O’Stolz定理

1.{yn}limnxnxn1ynyn1=Alimnxnyn=A2.{yn}0limnxn=0limnxnxn1ynyn1=Alimnxnyn=A

例题:

1.求

limn1k+2k++nknk+1

解:
xn=1k+2k++nkyn=nk+1limnxnyn=limnxnxn1ynyn1=limnnknk+1(n1)k+1=limnnkCkk+1nk+f(n)(deg(f(n)=k1))=1k+1

2.已知

x1=1,xn=1+xn11+xn1

limnxn

解:
x2=32>x1x3=1+x21+x2>1+x11+x1=x2xnxn=xn11+xn1<2xnlimnxn=Alimnxn=1+limnxn11+xn1A=1+52

公理:Cauchy收敛准则

{xn}ϵ>0,N,s.t.n,m>N,|xnxm|<ϵ

  • 调和数列 {xn} xn=1+12+13++1n 不是收敛数列,因为它无法满足Cauchy收敛准则

例题

1.求

limn3n+n33n+1+(n+1)3

解:
limn3n+n33n+1+(n+1)3=limn1+n33n3+(n+1)33n=13

  • 证明:

    limnn33n=0

  • limnn33n=limnn3(n1)33n3n1=limn3n23n+123n1=limn[3n23n+1][3(n1)23(n1)+1]23n123n2=limn6n623n2=limn(6n6)[6(n1)6]23n223n3=limn623n3=0

2.求

limnnlgnn

解:
limnnlgnn=limnnnlimnlgnn=1

  • 证明:

    limnlgnn=1

  • 1<=limnlgnn<=limnnnlimnlgnn=1

3.求

limn1nn

解:
n=nnn>=nn=123nn>=nn2n=n0=limn1n<=limn1n<=limn1n=0limn1nn=0

  • 41
    点赞
  • 137
    收藏
    觉得还不错? 一键收藏
  • 9
    评论
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值