如何理解数列极限和收敛性

如何理解数列极限和收敛性

数列极限说来其实都不陌生,但往往到了高数的这段内容的时候许多人就会觉得非常头疼了。

定义:设 { x n } \left\{x_{n}\right\} {xn} 为一数列,如果存在常数 a a a, 对于任意给定的正数 ε \varepsilon ε ( 不论它多么小 ),总存在正整数 N N N, 使得 当 n > N n>N n>N 时, 有以下不等式成立:
∣ x n − a ∣ < ε (1) \left|x_{n}-a\right|<\varepsilon \tag{1} xna<ε(1)
那么就称 a a a { x n } \left\{x_{n}\right\} {xn} 的极限。记作:
lim ⁡ n → ∞ x n = a (2) \lim _{n \rightarrow \infty} x_{n}=a \tag{2} nlimxn=a(2)

x n → a ( n → ∞ ) x_{n} \rightarrow a(n \rightarrow \infty) xna(n)

一、从几何上理解

定义中的(1)式其实可以拆解成一个不等式链:
− ε < x n − a < ε -\varepsilon<x_{n}-a<\varepsilon ε<xna<ε
它还可以写成:
a − ε < x n < a + ε a-\varepsilon<x_{n}<a+\varepsilon aε<xn<a+ε
这样改写过后有一个很大的好处,那就是此时可以看出最终 { x n } \{x_{n}\} {xn}的所有点都要落在以 a a a 为中心,上下距离均为 ε \varepsilon ε 的范围内。也就是下图所示。(原图地址

数列极限示意图

注意:上图中的 N N N 只与 ε \varepsilon ε 相关。

定义的涵义也可以理解为: 如果 ε \varepsilon ε 不管有多小,这个 N N N 都可以取得足够大,使数列中第 N N N 项(不包括 N N N)之后的所有点都落在上述的范围内,那么这个数列就是收敛的。并且就收敛于上图中的 a a a.

由任意性很容易理解这样一个过程:如果把 ε \varepsilon ε 取得更小,那么 N N N 就得取得更大,这样才能保证上图中 N N N项之后的点都落在由 ε \varepsilon ε 的范围内。

下面这组图就描绘了这样的变化过程(图片源自):
在这里插入图片描述

二、从代数上理解

代数上的理解虽然抽象,但有时候反而更加直接。我们不妨考虑这样一个问题:如果给定一个特别小的 ε \varepsilon ε, 怎么求出它对应的 N N N?

根据定义,如果 ε \varepsilon ε 已经给定,那么这个 N N N 必须使得(1)式成立。

这里特别注意以下几个点和逻辑:

  • x n x_n xn 是数列,那么它一定是一个和 n n n 有关的数字。而通常它是一个关于 n n n 的表达式。
  • 要求出满足(1)式的 N N N,其本质问题就是将(1)式这个不等式给解出来。只不过解出的范围是 n n n 的范围,那么它的最小值其实就是 N N N.

用这种方式再去理解教材的例1-3应该就会更加清楚了。

注:许多同学经常在这时忘记解不等式的问题。一定记着,此时如果弄不明白就一定要去回顾一下解不等式的基本方法,否则你会误将不会解不等式当成你不懂极限定义!!!同时注意我们这里要解的是一个整数的范围,而不是实数的范围。

三、学会用直观的方式为自己减轻负担

书上有一些不太好猜的数列极限,此时冥想是必然无用的。直接画出来是最方便的:

例1 { 2 n − 1 3 n } \left\{\frac{2^{n}-1}{3^{n}}\right\} {3n2n1}

画出前100个点它长这样,那么很显然我们大胆猜它极限就是0,其后再去仔细证明。

在这里插入图片描述

例2: [ ( − 1 ) n + 1 ] n + 1 n \left[(-1)^{n}+1\right] \frac{n+1}{n} [(1)n+1]nn+1

这个看起来复杂些,直接画1000个点,仔细一看一直在震荡,于是大胆猜测它不收敛。

在这里插入图片描述

对于不会写程序的同学来说,绘图可以直接采用Excel实现。

如果会用一点程序,但又不想装IDE可以用一点在线编译环境,比如:轻量级IDE介绍(适用于python等多种语言)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

半个冯博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值