如何理解数列极限和收敛性
数列极限说来其实都不陌生,但往往到了高数的这段内容的时候许多人就会觉得非常头疼了。
定义:设
{
x
n
}
\left\{x_{n}\right\}
{xn} 为一数列,如果存在常数
a
a
a, 对于任意给定的正数
ε
\varepsilon
ε ( 不论它多么小 ),总存在正整数
N
N
N, 使得 当
n
>
N
n>N
n>N 时, 有以下不等式成立:
∣
x
n
−
a
∣
<
ε
(1)
\left|x_{n}-a\right|<\varepsilon \tag{1}
∣xn−a∣<ε(1)
那么就称
a
a
a 是
{
x
n
}
\left\{x_{n}\right\}
{xn} 的极限。记作:
lim
n
→
∞
x
n
=
a
(2)
\lim _{n \rightarrow \infty} x_{n}=a \tag{2}
n→∞limxn=a(2)
或
x
n
→
a
(
n
→
∞
)
x_{n} \rightarrow a(n \rightarrow \infty)
xn→a(n→∞)
一、从几何上理解
定义中的(1)式其实可以拆解成一个不等式链:
−
ε
<
x
n
−
a
<
ε
-\varepsilon<x_{n}-a<\varepsilon
−ε<xn−a<ε
它还可以写成:
a
−
ε
<
x
n
<
a
+
ε
a-\varepsilon<x_{n}<a+\varepsilon
a−ε<xn<a+ε
这样改写过后有一个很大的好处,那就是此时可以看出最终
{
x
n
}
\{x_{n}\}
{xn}的所有点都要落在以
a
a
a 为中心,上下距离均为
ε
\varepsilon
ε 的范围内。也就是下图所示。(原图地址)
注意:上图中的 N N N 只与 ε \varepsilon ε 相关。
定义的涵义也可以理解为: 如果 ε \varepsilon ε 不管有多小,这个 N N N 都可以取得足够大,使数列中第 N N N 项(不包括 N N N)之后的所有点都落在上述的范围内,那么这个数列就是收敛的。并且就收敛于上图中的 a a a.
由任意性很容易理解这样一个过程:如果把 ε \varepsilon ε 取得更小,那么 N N N 就得取得更大,这样才能保证上图中 N N N项之后的点都落在由 ε \varepsilon ε 的范围内。
下面这组图就描绘了这样的变化过程(图片源自):
二、从代数上理解
代数上的理解虽然抽象,但有时候反而更加直接。我们不妨考虑这样一个问题:如果给定一个特别小的 ε \varepsilon ε, 怎么求出它对应的 N N N?
根据定义,如果 ε \varepsilon ε 已经给定,那么这个 N N N 必须使得(1)式成立。
这里特别注意以下几个点和逻辑:
- x n x_n xn 是数列,那么它一定是一个和 n n n 有关的数字。而通常它是一个关于 n n n 的表达式。
- 要求出满足(1)式的 N N N,其本质问题就是将(1)式这个不等式给解出来。只不过解出的范围是 n n n 的范围,那么它的最小值其实就是 N N N.
用这种方式再去理解教材的例1-3应该就会更加清楚了。
注:许多同学经常在这时忘记解不等式的问题。一定记着,此时如果弄不明白就一定要去回顾一下解不等式的基本方法,否则你会误将不会解不等式当成你不懂极限定义!!!同时注意我们这里要解的是一个整数的范围,而不是实数的范围。
三、学会用直观的方式为自己减轻负担
书上有一些不太好猜的数列极限,此时冥想是必然无用的。直接画出来是最方便的:
例1: { 2 n − 1 3 n } \left\{\frac{2^{n}-1}{3^{n}}\right\} {3n2n−1}
画出前100个点它长这样,那么很显然我们大胆猜它极限就是0,其后再去仔细证明。
例2: [ ( − 1 ) n + 1 ] n + 1 n \left[(-1)^{n}+1\right] \frac{n+1}{n} [(−1)n+1]nn+1
这个看起来复杂些,直接画1000个点,仔细一看一直在震荡,于是大胆猜测它不收敛。
对于不会写程序的同学来说,绘图可以直接采用Excel实现。
如果会用一点程序,但又不想装IDE可以用一点在线编译环境,比如:轻量级IDE介绍(适用于python等多种语言)