布隆过滤器
Bloom 过滤器 ,它是一种空间效率高的概率数据结构, 基于Hash函数与一个位数组,它能够快速答复"某个元素是否存在"的问题。布隆过滤器只能用于添加元素与查询元素,不能够用于删除元素。
在布隆过滤器之前,如果想判断一个元素是不是在一个集合里,一般想到的是将所有元素保存起来,然后通过比较确定,随着集合中元素的增加,我们需要的存储空间越来越大,检索速度也越来越慢。
布隆过滤器的原理是,当一个元素被加入集合时,通过K个散列函数将这个元素映射成一个位数组中的K个点,把它们置为1。检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些点有任何一个0,则被检元素一定不在;如果都是1,则被检元素很可能在。
优点
相比于其它的数据结构,布隆过滤器在空间和时间方面都有巨大的优势。布隆过滤器存储空间和插入/查询时间都是常数(O(K))。另外,散列函数相互之间没有关系,方便由硬件并行实现。布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势。
布隆过滤器可以表示全集,其它任何数据结构都不能;
缺点
但是布隆过滤器的缺点和优点一样明显。
-
误算率 :随着存入的元素数量增加,误算率随之增加。但是如果元素数量太少,则使用散列表足矣。
-
无法删除:一般情况下不能从布隆过滤器中删除元素。我们很容易想到把位数组变成整数数组,每插入一个元素相应的计数器加1, 这样删除元素时将计数器减掉就可以了。然而要保证安全地删除元素并非如此简单。首先我们必须保证删除的元素的确在布隆过滤器里面。这一点单凭这个过滤器是无法保证的。另外计数器回绕也会造成问题。
开源框架