Logistic Regression逻辑回归的简单解释

本文介绍了Logistic Regression的概念及其与线性回归的区别,重点讲解了Odds和Logit函数,以及如何通过Sigmoid函数将输入转换为概率输出。逻辑回归用于分类问题,特别是二分类,输出是属于某一类的概率。通过将线性组合输入Sigmoid函数,得到概率估计值。
摘要由CSDN通过智能技术生成

Logistic Regression也叫Logit Regression,在机器学习中属于参数估计的模型。逻辑回归与普通线性回归(Linear Regression)有很大的关系。在应用上,它们有所区别:

  • 普通线性回归主要用于连续变量的预测,即,线性回归的输出 y y y的取值范围是整个实数区间( y ∈ R y \in R yR
  • 逻辑回归用于离散变量的分类,即,它的输出 y y y的取值范围是一个离散的集合,主要用于类的判别,而且其输出值 y y y表示属于某一类的概率

一个单独的逻辑回归函数只能判别两个类,这里用0和1表示. 逻辑回归的结果会给出一个概率 p p p,表示属于类别1的概率。既然是两类问题,那么属于类别0的概率自然就是 1 − p 1-p 1p。有没有发现一点二项分布(Binomial Distribution)的影子?

逻辑回归应用广泛,而且因为给出的结果是一个概率,比单纯的“是”或“不是”包含更多的信息,因此大受人们喜爱(误)。我们之前参加Kaggle广告点击率预测竞赛时使用的就是逻辑回归。因为用户要么点了广告,要么没点,我们给出一个概率,就可以判断用户的点击广告的可能性。这个预测看起来很简单,的确是,模型很简单的,难的地方在于features的分析,选取,综合等,也就是常说的pre-processing。

文章内容

很多文章介绍逻辑回归时会直接给出一个叫sigmoid的函数,该函数的值域范围是 ( 0 , 1 ) (0,1) (0,1),刚好是概率的取值范围(也不完全是,因为是开区间)。本文会再稍微往前一点点,从引入sigmoid函数之前介绍一下Logistic Regression。文章只做简单介绍(真的很简单),不涉及参数估计的内容。

Odds与Logit函数

逻辑回归的输入是一个线性组合,与线性回归一样,但输出变成了概率。而且逻辑回归用于预测两类问题,类似一个伯努利试验。假设在一个伯努利试验中,成功的概率是 p p p,失败的概率是 1 − p 1-p 1p,我们设逻辑回归的输出是成功的概率 p p p,那么需要一个函数将逻辑回归的输入(一个线性组合)与 p p p联系起来。下面介绍这个函数,它的名字叫Logit.

我们定义:
(1) O d d s = p 1 − p Odds = \frac{p}{1-p} \tag1 Odds=1pp(1)
上式很直观,表示成功的概率是失败概率的多少倍,中文叫做发生比

在赌博中,发生比大概描述了赢的概率是输的概率的几倍。

对Odds取自然对数:
(2) ln ⁡ ( O d d s ) = ln ⁡ ( p 1 − p ) = ln ⁡ ( p ) − ln ⁡ ( 1 − p ) \ln(Odds) = \ln(\frac{p}{1-p}) = \ln(p) - \ln(1-p) \tag2 ln(Odds)=ln(1pp)=ln(p)ln(1p)(2)
上式即为logit函数的定义,参数为 p p p,记为:
(3) l o g i t ( p ) = ln ⁡ ( O d d s ) logit(p) = \ln(Odds) \tag3 logit(p)=ln(Odds)(3)
l o g i t ( p ) logit(p) logit(p)的图像如下所示,可以看到它的定义域是 [ 0 , 1 ] [0,1] [0,1]

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值