Logistic Regression逻辑回归的简单解释

本文介绍了Logistic Regression的概念及其与线性回归的区别,重点讲解了Odds和Logit函数,以及如何通过Sigmoid函数将输入转换为概率输出。逻辑回归用于分类问题,特别是二分类,输出是属于某一类的概率。通过将线性组合输入Sigmoid函数,得到概率估计值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Logistic Regression也叫Logit Regression,在机器学习中属于参数估计的模型。逻辑回归与普通线性回归(Linear Regression)有很大的关系。在应用上,它们有所区别:

  • 普通线性回归主要用于连续变量的预测,即,线性回归的输出 y y y的取值范围是整个实数区间( y ∈ R y \in R yR
  • 逻辑回归用于离散变量的分类,即,它的输出 y y y的取值范围是一个离散的集合,主要用于类的判别,而且其输出值 y y y表示属于某一类的概率

一个单独的逻辑回归函数只能判别两个类,这里用0和1表示. 逻辑回归的结果会给出一个概率 p p p,表示属于类别1的概率。既然是两类问题,那么属于类别0的概率自然就是 1 − p 1-p 1p。有没有发现一点二项分布(Binomial Distribution)的影子?

逻辑回归应用广泛,而且因为给出的结果是一个概率,比单纯的“是”或“不是”包含更多的信息,因此大受人们喜爱(误)。我们之前参加Kaggle广告点击率预测竞赛时使用的就是逻辑回归。因为用户要么点了广告,要么没点,我们给出一个概率,就可以判断用户的点击广告的可能性。这个预测看起来很简单,的确是,模型很简单的,难的地方在于features的分析,选取,综合等,也就是常说的pre-processing。

文章内容

很多文章介绍逻辑回归时会直接给出一个叫sigmoid的函数,该函数的值域范围是 ( 0 , 1 ) (0,1) (0,1),刚好是概率的取值范围(也不完全是,因为是开区间)。本文会再稍微往前一点点,从引入sigmoid函数之前介绍一下Logistic Regression。文章只做简单介绍(真的很简单),不涉及参数估计的内容。

Odds与Logit函数

逻辑回归的输入是一个线性组合,与线性回归一样,但输出变成了概率。而且逻辑回归用于预测两类问题,类似一个伯努利试验。假设在一个伯努利试验中,成功的概率是 p p p,失败的概率是 1 − p 1-p 1p,我们设逻辑回归的输出是成功的概率 p p p,那么需要一个函数将逻辑回归的输入(一个线性组合)与 p p p联系起来。下面介绍这个函数,它的名字叫Logit.

我们定义:
(1) O d d s = p 1 − p Odds = \frac{p}{1-p} \tag1 Odds=1pp(1)
上式很直观,表示成功的概率是失败概率的多少倍,中文叫做发生比

在赌博中,发生比大概描述了赢的概率是输的概率的几倍。

对Odds取自然对数:
(2) ln ⁡ ( O d d s ) = ln ⁡ ( p 1 − p ) = ln ⁡ ( p ) − ln ⁡ ( 1 − p ) \ln(Odds) = \ln(\frac{p}{1-p}) = \ln(p) - \ln(1-p) \tag2 ln(Odds)=ln(1pp)=ln(p)ln(1p)(2)
上式即为logit函数的定义,参数为 p p p,记为:
(3) l o g i t ( p ) = ln ⁡ ( O d d s ) logit(p) = \ln(Odds) \tag3 logit(p)=ln(Odds)(3)
l o g i t ( p ) logit(p) logit(p)的图像如下所示,可以看到它的定义域是 [ 0 , 1 ] [0,1] [0,1]

### 回答1: Logistic回归是一种逻辑回归方法。它是一种特殊的回归方法,用于对于分类问题中的因变量建立预测模型。这种方法基于学习一个由输入变量到二元输出变量的条件概率来构建预测模型,用于对一个新的样本进行分类。它对于分类问题中的因变量建立预测模型非常有效。 ### 回答2: 逻辑回归是一种用于解决二分类问题的监督学习算法。它是一种基于概率统计的分类模型,可以用于预测分类结果。逻辑回归的输出结果是一个0到1之间的概率值,其含义是该样本属于某一类别的概率。 逻辑回归模型的基本假设是数据服从伯努利分布,也就是数据只有两种可能的取值,被称为正类和负类。对于给定的训练数据集,逻辑回归模型的目标是最大化似然函数,即最大化样本属于正类(或负类)的概率。利用最大似然估计方法,我们可以求解出逻辑回归模型的参数。在实际应用中,我们通常使用梯度下降等优化算法来求解模型参数。 逻辑回归模型有多种变体,如L1正则化逻辑回归、L2正则化逻辑回归、多项式逻辑回归等。其中,L1正则化逻辑回归可以实现特征选择,可以削减一些不重要的特征,从而简化模型,提高计算速度和模型的泛化能力。 在机器学习领域,逻辑回归是一个常用的模型。它广泛应用于各种领域,如网络广告点击率预测、信用风险评估、医疗诊断等。逻辑回归模型简单易实现,具有较高的解释性,是一个较为理想的分类算法。 ### 回答3: 逻辑回归Logistic Regression)是一种经典的分类算法,在机器学习和统计学领域中得到广泛的应用。它旨在从已有的数据中构建一个能够预测类别的模型,输出结果为概率值,可以用于二分类或多分类问题的解决。 逻辑回归的基本原理是利用一个特定的函数对输入特征进行线性组合,然后将结果输入到一个Sigmoid函数中进行映射,将结果值压缩到0到1的范围内,表示输入属于某一类别的概率。这个Sigmoid函数可以被看作是一个阀门,控制着数据流向最终输出。它将具有很强预测能力的线性组合函数输出转化为概率输出的过程,将出现在中间层的结果值映射到[0,1]范围内,以表达某个样本属于某个类别的概率。 在训练模型时,逻辑回归使用的是最大似然估计的方法来确定模型的参数。在分类训练数据时,需要对样本经过一系列的处理,例如特征提取、特征转换、数据归一化等步骤。训练数据可以通过梯度下降法、牛顿迭代法等优化方法来确定最佳参数。通过此训练过程,模型可以学习到输入特征与输出概率之间的映射关系。 逻辑回归的优点包括了功能简单、速度快、易于实现和修改等等。它是机器学习中最为基本的分类算法之一,在数据挖掘、信用评估、自然语言处理、广告推荐等领域都有广泛的应用。逻辑回归作为一个二分类算法,常被用于解决分类问题。然而,在实际业务中,如何选择不同的逻辑回归模型及参数,对算法的效果和优化有着重要的影响。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值