从零开始大数据 1

本文介绍了大数据学习的全面路径,包括基础知识、实战练习、编程语言选择、工具框架学习、社区参与和经典书籍推荐,强调了数据量、存储、计算及数据治理的重要性。
摘要由CSDN通过智能技术生成

探险大数据的世界,从零开始!🚀 一起揭开数据的神秘面纱,学习大数据的奇妙之旅,发现数据背后的故事。让我们用好奇心和学习的火花,开启大数据领域的冒险征程吧!💡📊 #大数据初学者 #数据冒险者#

从零踏上大数据学习之路?先来点攻略!🗺️

1. 掌握基础知识: 了解大数据的基本概念和术语,从Hadoop、Spark到NoSQL数据库,打好基础。

2. 实战练习: 通过项目实践,应用理论知识。搭建自己的小数据工程,亲身体验数据处理的全过程。

3. 学习编程语言: Python、Java等是大数据处理的得力工具,学习一门编程语言为你在大数据领域开疆辟土。

4. 深入学习工具和框架: Spark、Hive、HBase等工具是大数据处理的黄金标配,深入了解它们的使用方法。

5. 参与社区与网络课程: 通过加入大数据社区,参与讨论,向经验丰富的人请教。此外,有很多在线课程可以帮你系统地学习大数据知识。

6. 阅读经典书籍: 《Hadoop权威指南》、《Spark快速大数据分析》等书籍是学习的好帮手,能够深入理解大数据技术的本质。

7. 保持好奇心: 大数据领域日新月异,时刻保持学习的好奇心,关注最新技术动态,不断提升自己。

愿你在大数据的海洋中航行顺风,发现属于你的数据宝藏!🚢💻 

什么叫大数据

一切能够被计算机识别的东西都是数据:
  文字(英文字母,汉字,特殊的符号)
  音频数据、视频数据、文档、地理虚拟数据。

当你的数据量达到一定的程度,使用常规的处理方式已经满足不了需求,必须使用使用新的数据处理技术,这种处理模式就是大数据处理。

常规方式:计算器、excel,普通数据库
新的处理模式: 分布式存储,分布式计算,分布式数据库 ,集群方案 ,数据治理,数据中台,数据湖。

数据的体量

在我们以后的工作中使用的数据体量

1、传统的非互联网公司数据量: GB 和  TB级别
2、互联网公司/顶级大厂数据量:TB / PB级别

大数据要解决的问题以及特点

大数据需要解决的问题

1:海量数据的存储: HDFS、HBase、Doris、Kudu,Kafka
2:海量数据的计算: MapReduce、Spark、Flink
3:海量数据的迁移问题:Sqoop / Datax /Kettle

大数据的特点:四个字概括    大 多 值 信

大:数据体量大,TB/PB
多:数据源的数据类型多样化,结构化/非结构化数据,音频数据,视频数据
值:大数据的数据价值密度很低,需要你有快速的数据价值提纯能力
信:大数据处理必须保证数据质量是可靠的,也就是要对数据做治理

那么文章到此截止,不足之处请各位大佬多多指教

愿你在大数据的海洋中航行顺风,发现属于你的数据宝藏!🚢💻 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

纪祥_ee1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值