探险大数据的世界,从零开始!🚀 一起揭开数据的神秘面纱,学习大数据的奇妙之旅,发现数据背后的故事。让我们用好奇心和学习的火花,开启大数据领域的冒险征程吧!💡📊 #大数据初学者 #数据冒险者#
从零踏上大数据学习之路?先来点攻略!🗺️
1. 掌握基础知识: 了解大数据的基本概念和术语,从Hadoop、Spark到NoSQL数据库,打好基础。
2. 实战练习: 通过项目实践,应用理论知识。搭建自己的小数据工程,亲身体验数据处理的全过程。
3. 学习编程语言: Python、Java等是大数据处理的得力工具,学习一门编程语言为你在大数据领域开疆辟土。
4. 深入学习工具和框架: Spark、Hive、HBase等工具是大数据处理的黄金标配,深入了解它们的使用方法。
5. 参与社区与网络课程: 通过加入大数据社区,参与讨论,向经验丰富的人请教。此外,有很多在线课程可以帮你系统地学习大数据知识。
6. 阅读经典书籍: 《Hadoop权威指南》、《Spark快速大数据分析》等书籍是学习的好帮手,能够深入理解大数据技术的本质。
7. 保持好奇心: 大数据领域日新月异,时刻保持学习的好奇心,关注最新技术动态,不断提升自己。
愿你在大数据的海洋中航行顺风,发现属于你的数据宝藏!🚢💻
什么叫大数据
一切能够被计算机识别的东西都是数据:
文字(英文字母,汉字,特殊的符号)
音频数据、视频数据、文档、地理虚拟数据。
当你的数据量达到一定的程度,使用常规的处理方式已经满足不了需求,必须使用使用新的数据处理技术,这种处理模式就是大数据处理。
常规方式:计算器、excel,普通数据库
新的处理模式: 分布式存储,分布式计算,分布式数据库 ,集群方案 ,数据治理,数据中台,数据湖。
数据的体量
在我们以后的工作中使用的数据体量
1、传统的非互联网公司数据量: GB 和 TB级别
2、互联网公司/顶级大厂数据量:TB / PB级别
大数据要解决的问题以及特点
大数据需要解决的问题
1:海量数据的存储: HDFS、HBase、Doris、Kudu,Kafka
2:海量数据的计算: MapReduce、Spark、Flink
3:海量数据的迁移问题:Sqoop / Datax /Kettle
大数据的特点:四个字概括 大 多 值 信
大:数据体量大,TB/PB
多:数据源的数据类型多样化,结构化/非结构化数据,音频数据,视频数据
值:大数据的数据价值密度很低,需要你有快速的数据价值提纯能力
信:大数据处理必须保证数据质量是可靠的,也就是要对数据做治理
那么文章到此截止,不足之处请各位大佬多多指教
愿你在大数据的海洋中航行顺风,发现属于你的数据宝藏!🚢💻