Pydantic的model_validator

Pydantic model_validator 装饰器教程

引言

在 Pydantic 中,除了可以使用 field_validator 装饰器对单个字段进行验证外,还可以使用 model_validator 装饰器对整个模型进行验证。model_validator 允许您在字段级验证之后,对模型的整个数据进行额外的验证。在本教程中,我们将探讨如何使用 model_validator 装饰器来创建自定义的模型验证逻辑。

基础知识

在开始之前,请确保您已经安装了 Pydantic。如果没有,请使用以下命令安装:

pip install pydantic

创建 Pydantic 模型

首先,让我们创建一个简单的 Pydantic 模型。这个模型将包含两个字段:ab

from pydantic import BaseModel
class Model(BaseModel):
    a: str
    b: int

使用 model_validator 装饰器

model_validator 装饰器允许您为模型添加自定义验证逻辑。要使用它,请按照以下步骤操作:

  1. 导入 model_validator: 从 pydantic 导入 model_validator
from pydantic import BaseModel, model_validator
  1. 定义验证函数: 创建一个类方法,该方法接受一个参数(模型的 dict 表示)并返回验证后的模型。
class Model(BaseModel):
    a: str
    b: int
    @model_validator
    @classmethod
    def check_a_and_b(cls, values: dict):
        if values['a'] != ' foobar ':
            raise ValueError('Field "a" must contain " foobar "')
        if values['b'] < 10:
            raise ValueError('Field "b" must be at least 10')
        return cls(**values)

在这个例子中,我们定义了一个名为 check_a_and_b 的验证函数,它检查 a 字段的值是否包含子字符串 " foobar ",以及 b 字段的值是否至少为 10。
3. 应用装饰器: 使用 @model_validator 语法将装饰器应用于验证函数。
4. 测试模型: 创建模型实例并测试验证逻辑。

# 正确的值
model = Model(a=' foobar ', b=20)
print(model)
# 错误的值
try:
    model = Model(a='snap', b=5)
except ValidationError as exc_info:
    print(exc_info)

在上面的例子中,第一个模型实例成功创建,因为 a 字段的值包含 " foobar " 并且 b 字段的值至少为 10。第二个实例创建失败,因为 a 字段的值不包含 " foobar ",并且 b 字段的值小于 10,因此抛出了 ValidationError

高级用法

model_validator 装饰器还支持一些高级功能,如:

  • 自定义验证模式: 通过设置 mode 参数,可以指定验证是在字段验证前还是验证后进行。
@model_validator(mode='before')
  • 检查字段存在性: 通过设置 check_fields 参数,可以控制是否检查字段是否实际存在于模型中。
@model_validator(check_fields=False)

model_validator 装饰器源码

以下是 model_validator 装饰器的简化版源码:

def model_validator(mode: ModelValidatorModes = 'after', check_fields: bool | None = None) -> Callable[[Any], Any]:
    def dec(f: Callable[..., Any] | staticmethod[Any, Any] | classmethod[Any, Any, Any]) -> _decorators.PydanticDescriptorProxy[Any]:
        if _decorators.is_instance_method_from_sig(f):
            raise PydanticUserError(
                '`@model_validator` cannot be applied to instance methods', code='validator-instance-method'
            )
        # auto apply the @classmethod decorator
        f = _decorators.ensure_classmethod_based_on_signature(f)
        dec_info = _decorators.ModelValidatorDecoratorInfo(mode=mode, check_fields=check_fields)
        return _decorators.PydanticDescriptorProxy(f, dec_info)
    return dec

源码解读

  1. 装饰器定义:
    • model_validator 函数定义了一个装饰器,它接受两个可选的关键字参数:modecheck_fields
  2. 内部函数 dec:
    • dec 是一个内部函数,它接受一个可调用对象 f 作为参数,并返回一个 _decorators.PydanticDescriptorProxy 对象。
    • 代码首先检查 f 是否是实例方法。如果是,抛出 PydanticUserError,因为 model_validator 不能应用于实例方法。
    • 然后,确保 f 是一个类方法。
    • 创建一个包含模式和字段检查标志的 _decorators.ModelValidatorDecoratorInfo 对象。
    • 最后,返回一个 _decorators.PydanticDescriptorProxy 对象,它包装了原始的函数 f 和模型验证信息。
  3. 返回 dec:
    • model_validator 函数返回 dec 函数,它将作为装饰器应用于验证函数。

结论

在本教程中,我们学习了如何使用 Pydantic 的 model_validator 装饰器来为模型添加自定义验证逻辑。通过这个强大的工具,您可以对整个模型的数据进行复杂的验证,从而确保数据的准确性和完整性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吉小雨

你的激励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值