一、产生随机变量的逆变换方法
定理:设F(x)是任一连续的分布函数,如果,且那么.
证明 由于,则有
所以
此定理给出了从均匀分布随机数到给定分布的随机数的变换,根据该变换可以生分布函数为的随机数,其算法可以用下列两个步骤实现:
(1)产生均匀分布的随机数,即;
(2)计算
二、产生指数随机分布随机数的方法
指数分布的概率密度函数为
其分布函数为
指数分布的均值为,方差为
根据上述的逆变换法,产生指数分布随机数的方法为
(1)产生均匀分布的随机数,即;
(2)计算
1、exponent.h 文件
#pragma once
#ifndef EXPONENT_H_
#define EXPONENT_H_
/*
函数功能: 产生指数分布的随机数
输入参数说明:
beta 指数分布的均值
seed 长整型指针变量, *seed 为伪随机数的种子
*/
double exponent_data(double beta, long int * seed);
#endif // !EXPONENT_H_
2、exponent.c文件
#include "exponent.h"
#include <stdint.h>
#include "string.h"
#include "stdio.h"
#include "uniform.h"
#include <math.h>
/*
函数功能: 产生指数分布的随机数
输入参数说明:
beta 指数分布的均值
seed 长整型指针变量, *seed 为伪随机数的种子
*/
double exponent_data(double beta, long int * seed)
{
double u, x;
u = uniform_data(0.0, 1.0, seed);
x = -beta * log(u);
return x;
}
3、主程序main.c
#include <stdio.h>
#include <string.h>
#include "uniform.h"
#include "exponent.h"
int main()
{
// 产生50个指数分布的随机数
int i, j;
long int s;
double x, beta;
beta = 2.0; s = 13579;
for (i = 0; i < 10; i++)
{
for (j = 0; j < 5; j++)
{
x = exponent_data(beta, &s);
printf("%13.7f",x);
}
printf("\n");
}
getchar(); // 此行代码是为了保持输出窗口,按任意按键关闭弹窗
return 0;
}
4、代码运行结果