1、产生随机变量的组合法
将分布函数分解为若干个较简单的子分布函数的线性组合
其中且,是分布函数。
定理:若随机变量,即,并且,取;
证明的分布函数为
定理证毕。
根据此定义,我们可以给出产生随机数的组合和算法如下:
(1)产生一个正随机数使得;
(2)在时,产生具有分布函数的随机变量x。
在该算法中,首先以概率选择子分布函数,然后取的随机数作为的随机数。
2、产生拉普拉斯分布随机数的方法
拉普拉斯分布的概率密度函数为
令拉普拉斯的均值为,方差为,,拉普拉斯分布也称为双指数分布。
根据上述的组合算法,产生拉普拉斯分布随机数的方法为
(1)产生均匀分布随机数和,即
(2)计算
3、C语言代码实现
3.1 头文件laplace.h
#pragma once
#ifndef LAPLACE_H_
#define LAPLACE_H_
/*
函数功能: 产生laplace分布的随机数
输入参数说明:
beta 拉普拉斯分布参数
seed 长整型指针变量, *seed 为伪随机数的种子
*/
double laplace_data(double beta, long int * seed);
#endif // !LAPLACE_H_
3.2 函数文件laplace.c
#include "laplace.h"
#include <stdint.h>
#include "string.h"
#include "stdio.h"
#include "uniform.h"
#include <math.h>
/*
函数功能: 产生laplace分布的随机数
输入参数说明:
beta 拉普拉斯分布参数
seed 长整型指针变量, *seed 为伪随机数的种子
*/
double laplace_data(double beta, long int * seed)
{
double u1,u2, x;
u1 = uniform_data(0.0, 1.0, seed);
u2 = uniform_data(0.0, 1.0, seed);
if (u1 <= 0.5)
{
x = -beta * log(1.0 - u2);
}
else
{
x = -beta * log(u2);
}
return x;
}
3.3 主程序main.c
#include <stdio.h>
#include <string.h>
#include "uniform.h"
#include "laplace.h"
int main()
{
// 产生50个指数分布的随机数
int i, j;
long int s;
double x, beta;
beta = 2.0; s = 13579;
for (i = 0; i < 10; i++)
{
for (j = 0; j < 5; j++)
{
x = laplace_data(beta, &s);
printf("%13.7f",x);
}
printf("\n");
}
getchar(); // 此行代码是为了保持输出窗口,按任意按键关闭弹窗
return 0;
}
程序中uniform.h和uniform.c的代码见文章
3.4 运行输出结果