Twin Builder 中的电池等效电路模型仿真

电池单元热设计挑战

电池热管理的主要挑战之一是确保温度低于最大工作限值。较高的温度会导致效率降低、加速老化和潜在的安全隐患。工程师必须了解电池产生的热量,才能充分设计冷却系统。

了解和预测电池模块的热行为需要将电池的热损耗与电池单元的电气机械特性相结合。通过链接电池单元的电气特性,可以提高电池热抑制率,用于冷却系统设计。
 

工程解决方案

通过电池单元的物理测试数据,可以增强电池热行为的仿真。一种类型的电池测试称为混合脉冲功率表征 (HPPC)。此测试可以计算电池内阻。以下是来自示例 HPPC 数据集的一个脉冲示例。电池单元的内阻与电压降除以电流成正比。Twin Builder 从整个 HPPC 数据集生成电阻值,其中可能包括多个温度和充电状态 (SOC) 水平。该电阻与电路电流和电压一起用于预测电池热损失功率。

 

 

Ansys Twin Builder 软件提供了用于仿真和分析电池单元和模块热行为的工具。凭借其 Battery Wizard 功能,Twin Builder 允许工程师对复杂的热交互进行建模并评估不同的电池放电行为。Twin Builder 能够利用 HPPC 数据快速生成排热值。

通过使用 Twin Builder,工程师可以进

基于机器学习的音频情感分析系统Python源码(高分项目),能够从语音中识别出四种基本情感:愤怒、快乐、中性和悲伤。个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统P
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

David WangYang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值