hdu5780 gcd

题意:
已知x和n,求 gcd(xa1,xb1)(1a,bn)

思路

T(t)=1+x+x2+...+xt1
xa1=(x1)(1+x+x2+...+xa1)=(x1)T(a)
gcd(xa1,xb1)=(x1)gcd(T(a),T(b))
有公式: gcd(T(t1),T(t2))=T(gcd(t1,t2))
所以 gcd(xa1,xb1)=(x1)T(gcd(a,b))=xgcd(a,b)1
gcd(xa1,xb1)=(xgcd(a,b)1)=n2+xgcd(a,b)
(a,b)的种数在 n2 级,但gcd(a,b)的种数在 n 级,假设gcd(a,b)=i的对数有 f(i) 个则
xgcd(a,b)1a,bn=xif(n/i)1in
f(i) 很容易由 phi 函数得到,所以整个可以在 O(n) 时间内计算出来,这样T组数据复杂度为 O(Tn) 的,需要优化。
由于 xif(n/i) n/i 的种数在 O(n) 级,所以可以分段计算 xif(n/i)1in=(xlt+xlt+1+...+xrt)f(t)tn/i
对每个t可以 o(1) 算出来,但等比数列求和需要求逆元花费 O(logn) 时间,所以这一步复杂度为 O((n)logn) ,加上前面的各种预处理总复杂度为 O(n+Tnlogn)
对分段方法的说明:
假定当前计算到了i,则需要求出最大的j使得: n/i=n/j ,有一个公式是: j=n/n/i) 证明如下
n=pi+q ,则
n/i=n/j=p ———A
n/(j+1)<p ———B
由A得 (pi+q)/j=p ,所以 pi+qpj ———-C
由B得 (pi+q)/(j+1)<p ,所以 pi+q<p(j+1) ———D
综合C、D得 i+q/p1<ji+q/p 由于左右边界刚好相差1,所以区间内刚好有1个整数,即 j=i+q/p
i+q/p=i+(npi)/p=i+n/pi=n/p=n/n/i

#include <bits/stdc++.h>
using namespace std;
const int mod = 1e9 + 7;
const int N = 1e6 + 7;
typedef long long ll;
int phi[N], f[N], g[N], x, n, _, sqrtn, ans, l, r;

void init() {
    for (int i = 1; i < N; i++) phi[i] = i;
    for (int i = 2; i < N; i++) {
        if (phi[i] == i) {
            for (int j = i; j < N; j += i) {
                phi[j] = phi[j] / i * (i - 1);
            }
        }
    }
    for (int i = 1; i < N; i++) {
        f[i] = (f[i - 1] + phi[i]) % mod;
        g[i] = (2ll * f[i] - 1 + mod) % mod;
    }
}
ll powermod(ll a, ll n, ll mod) {
    ll ans = 1;
    while (n) {
        if (n & 1) ans = ans * a % mod;
        a = a * a % mod;
        n >>= 1;
    }
    return ans;
}
ll F(ll l, ll r) {
    if (x == 1) return r - l + 1;
    return (powermod(x, r + 1, mod) - powermod(x, l, mod) + mod) % mod * powermod(x - 1, mod - 2, mod) % mod;
}
int main() {
    init();
    cin >> _;
    while (_--) {
        cin >> x >> n;
        ans = 0;
        l = r = 1;
        for (; l <= n; l = r + 1) {
            r = n / (n / l);
            ans = (ans + g[n / l] * F(l, r) % mod) % mod;
        }
        cout << (ans - (ll)n * n % mod + mod) % mod << endl;
    }
    return 0;
}
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值