题目传送门:
http://acm.hdu.edu.cn/showproblem.php?pid=2069
题目大意是给定一个钱数,求出由1分,5分,10分,25分,50分的硬币组合出这个钱数,一共有多少种可能性。需要注意的是,硬币数最多不超过100枚。
初看题目最先想到的肯定是暴搜。
#include <iostream>
using namespace std;
int main(int argc, char const *argv[])
{
int i50,i25,i10,i5,i;
int n;
while (cin >> n) {
int cnt = 0;
for (i50 = 0; i50 <= n / 50; i50 ++) {
for (i25 = 0; i25 <= n / 25; i25 ++) {
for (i10 = 0; i10 <= n / 10; i10 ++) {
for (i5 = 0; i5 <= n / 5; i5 ++) {
for (i = 0; i <= n; i ++) {
if (50 * i50 + 25 * i25 + 10 * i10 + 5 * i5 + i == n && i50 + i25 + i10 + i5 + i <= 100) {
cnt ++;
break;
}
if (50 * i50 + 25 * i25 + 10 * i10 + 5 * i5 + i > n || i50 + i25 + i10 + i5 + i > 100) {
break;
}
}
}
}
}
}
cout << cnt << endl;
}
return 0;
}
随手一交,竟然过了……
如果用完全背包的思想去想这一道题。
状态:f[j][k]表示总额为j的钱数由k枚硬币组成一共有多少可能的解。
状态转移方程:f[j][k] += f[j-c[i]][k-1] (1≤k≤100)
#include <iostream>
#include <cstring>
using namespace std;
int main(int argc, char const *argv[])
{
int n;
int f[255][105];
const int w[] = {0,1,5,10,25,50,};
memset(f,0,sizeof(f));
// 大小为0的背包用0枚硬币填充有一种情况
f[0][0] = 1;
for (int i = 1; i <= 5 ; ++i)
{
for (int j = w[i]; j <= 250; j ++)
{
for(int k = 1; k <= 100; k ++)
{
f[j][k] += f[j-w[i]][k-1];
}
}
}
while (cin >> n) {
int ans = 0;
for (int i = 0; i <= 100; ++i)
{
ans += f[n][i];
}
cout << ans << endl;
}
return 0;
}