OpenCV视觉分析之目标跟踪(2)卡尔曼滤波器KalmanFilter的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

卡尔曼滤波器类。

该类实现了标准的卡尔曼滤波器(http://en.wikipedia.org/wiki/Kalman_filter, [292])。然而,你可以修改 transitionMatrix、controlMatrix 和 measurementMatrix 以获得扩展卡尔曼滤波器的功能。

注意
在 C API 中,当不再需要 CvKalman* kalmanFilter 结构时,应使用 cvReleaseKalman(&kalmanFilter) 释放它。

成员变量

cv::KalmanFilter 类包含以下几个主要成员变量:

  • StatePre (cv::Mat):状态向量的先验估计。
  • StatePost (cv::Mat):状态向量的后验估计。
  • TransitionMatrix (cv::Mat):状态转移矩阵F
  • ControlMatrix (cv::Mat):控制矩阵B
  • MeasurementMatrix (cv::Mat):测量矩阵H
  • ProcessNoiseCov (cv::Mat):过程噪声协方差矩阵Q
  • MeasurementNoiseCov (cv::Mat):测量噪声协方差矩阵R
  • ErrorCovPre (cv::Mat):状态误差协方差矩阵的先验估计。
  • ErrorCovPost (cv::Mat):状态误差协方差矩阵的后验估计。
    常用成员函数
  • cv::KalmanFilter::predict():执行卡尔曼滤波器的预测步骤。
  • cv::KalmanFilter::correct(const cv::Mat& measurement):执行卡尔曼滤波器的更新(校正)步骤。

代码示例


#include <opencv2/opencv.hpp>
#include <iostream>

int main()
{
   
    // 创建卡尔曼滤波器对象
    cv::KalmanFilter kalman( 4, 2, 0 );  // 4维状态空间,2维测量空间,无控制输入

    // 设置状态转移矩阵 F
    kalman.transitionMatrix = ( cv::Mat_< float<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

村北头的码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值