【视频编解码-02】视频编码的目的、条件和目标

视频编码,是视频处理中的一个核心技术。
现代我们所看到的所有视频,包括电视、互联网、手机等等,几乎所有的视频都会被编码、解码。
整个视频技术的基本流程是:视频数据的采集、视频数据的编码、视频数据的传输、视频数据的解码、视频数据的处理。
当采集到视频数据,将视频传输之前,需要对视频数据进行编码。本文将要整理回答一下三个问题:

  1. 为什么要进行视频编码?
  2. 为什么能进行视频编码?
  3. 视频编码的终极目标是什么?

1. 为什么要进行视频编码?

简单的一句话,那就是为了减少传输的视频数据量,视频编码的主要目的就是为了压缩原始视频的数据量。
为什么要减少传输的数据量呢?因为网络带宽的资源是有限的,传输大量的视频数据的成本是很高的,为了减少成本,提高传输的效率,所以针对原始数据要进行压缩编码。
在第一篇文章【视频编解码-01】像素-PPI-比特率-码率……中计算了100分钟电影的原始数据量,如果不进行压缩,那么不仅传输,存储的成本也很高。

2. 为什么能进行视频编码?

了解了为什么要视频编码的原因。再来看看为什么能进行视频压缩编码。这个问题,就是要回答视频压缩编码的条件什么?视频压缩编码到底压缩掉了什么数据?

视频编码的理论基础是香农的信息论,信息论是用概率和数理统计的方法研究信息、信息熵、通信系统、数据传输、密码学以及数据压缩等问题的基础理论。因为视频编码属于数据压缩的范畴,所以信息论是视频压缩的基础。

至于香农的信息论,可以参见百度百科香农三大定理

首先,来了解一个概念,信息熵:
公式如下,它代表了信源S的熵:
在这里插入图片描述
单位:Bit/字符
那信息熵到底是什么呢?它是信息量的度量单位。不要再去想什么不确定性了,抽象的让人想去抽它,就认为它是信息的多样性吧,它的实际意义有两个:

  • 信源S的平均信息量
  • 编码所有符号S平均所需要的位数
    直观的理解就是:信源熵是编码这个信源平均所需要的最小位数。

为什么能进行视频压缩编码?
第一个条件:香农第一定理【可边长无失真新原编码定理】,其意义是:将原始信源符号转化为新的码符号,使码符号尽量服从等概分布,从而每个码符号所携带的信息量达到最大,进而可以用尽量少的码符号传输信源信息。

**第二个条件:**视频数据本身存在大量的数据冗余。
视频数据的冗余,总结来看,主要有以下冗余:

  • 空间冗余,是静态图像存在的主要的数据冗余。大片连贯性的空间像素相似度非常高;
    时间冗余,是视频序列,也即相邻帧之间包含的非运动背景数据;
  • 编码冗余,也是信息熵冗余,由信息论可知,为了表示图像数据的一个像素点,只要按照其信息熵的大小分配相对应的比特数即可,但是对于图像数据的每个像素,在获取图像时很难获取像素的信息熵,因此一般的是对每个像素采用相同的比特数表示,这样就必然存在信息熵冗余;
  • 视觉冗余,人眼对图像的没感性是非均匀和非线性的,对于某些失真并不敏感,察觉不到图像的细微变化,这些细微变化即是丢失,人眼也感受不到,但是在记录视频的原始数据的时候,通常假定视觉系统是线性和均匀的,这一样就是产生了比理想编码更多的数据,这就是视觉冗余;
  • 知识冗余,图像中包含了一些人们的先验知识,比如图像中的人脸五官架构,这些位置信息是固定的;根据已有知识,可以构造某些图像中所包含的物体的模型,创建特征图库,这样图像编码的时候只需要保存一些特征参数,从而可以减少数据量,知识冗余是模型编码利用的主要特性;
  • 结构冗余,图像中存在很强的纹理结构或者自相似性,如果已知某种像素的分布模式,则可以通过某以特定过程生成图像;

以上两个必要条件,回答了为什么可以进行视频压缩编码。

3. 视频编码的终极目标是什么?

回答这个问题,也就是回答视频压缩编码的上限是什么?压缩到什么地步就不能在压缩了。

数字视频因为存在数据冗余 , 所以可以被压缩 。
数字视频由于在数字化时采用了帧内与帧间均匀采样 , 并由 RGB 三个分量均 匀表达采样量化后的数据 , 从而带来了空间冗余 、 时间冗余 、 和编码冗余 。 正是由 于这三种冗余的存在 , 才使得视频可以被压缩 。 很显然 , 视频编码的上限就是当冗余不再存在时的数据表达 。

参考例子

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值