ID3,C4.5

一.引入
决策树基本上是每一本机器学习入门书籍必讲的东西,其决策过程和平时我们的思维很相似,所以非常好理解,同时有一堆信息论的东西在里面,也算是一个入门应用,决策树也有回归和分类,但一般来说我们主要讲的是分类,方便理解嘛。

虽然说这是一个很简单的算法,但其实现其实还是有些烦人,因为其feature既有离散的,也有连续的,实现的时候要稍加注意

          (不同特征的决策,图片来自【1】)

O-信息论的一些point:
     首先看这里:http://blog.csdn.net/dark_scope/article/details/8459576
             然后加入一个叫信息增益的东西:
             □.信息增益:(information gain)
                                 g(D,A) = H(D)-H(D|A)
                                 表示了特征A使得数据集D的分类不确定性减少的程度
             □.信息增益比:(information gain ratio)
                                  g‘(D,A)=g(D,A) / H(D)
             □.基尼指数:
              
                        
                         
二.各种算法
1.ID3
ID3算法就是对各个feature信息计算信息增益,然后选择信息增益最大的feature作为决策点将数据分成两部分

                然后再对这两部分分别生成决策树。

                 图自【1】

       

2.C4.5
                C4.5与ID3相比其实就是用信息增益比代替信息增益,应为信息增益有一个缺点:

                       信息增益选择属性时偏向选择取值多的属性

                算法的整体过程其实与ID3差异不大:图自【2】

                 

3.CART
CART(classification and regression tree)的算法整体过程和上面的差异不大,然是CART的决策是二叉树的

每一个决策只能是“是”和“否”,换句话说,即使一个feature有多个可能取值,也只选择其中一个而把数据分类

两部分而不是多个,这里我们主要讲一下分类树,它用到的是基尼指数:

图自【2】

三.代码及实现
                  好吧,其实我就想贴贴代码而已……本代码在https://github.com/justdark/dml/tree/master/dml/DT

                  纯属toy~~~~~实现的CART算法:

                 

from __future__ import division
import numpy as np
import scipy as sp
import pylab as py
def pGini(y):
        ty=y.reshape(-1,).tolist()
        label = set(ty)
        sum=0
        num_case=y.shape[0]
        #print y
        for i in label:
            sum+=(np.count_nonzero(y==i)/num_case)**2
        return 1-sum
    
class DTC:
    def __init__(self,X,y,property=None):
        '''
            this is the class of Decision Tree
            X is a M*N array where M stands for the training case number
                                   N is the number of features
            y is a M*1 vector
            property is a binary vector of size N
                property[i]==0 means the the i-th feature is discrete feature,otherwise it's continuous
                in default,all feature is discrete
                
        '''
        '''
            I meet some problem here,because the ndarry can only have one type
            so If your X have some string parameter,all thing will translate to string
            in this situation,you can't have continuous parameter
            so remember:
            if you have continous parameter,DON'T PUT any STRING IN X  !!!!!!!!
        '''
        self.X=np.array(X)
        self.y=np.array(y)
        self.feature_dict={}
        self.labels,self.y=np.unique(y,return_inverse=True)
        self.DT=list()
        if (property==None):
            self.property=np.zeros((self.X.shape[1],1))
        else:
            self.property=property
            
        for i in range(self.X.shape[1]):
            self.feature_dict.setdefault(i)
            self.feature_dict[i]=np.unique(X[:,i])
 
        if (X.shape[0] != y.shape[0] ):
            print "the shape of X and y is not right"
            
        for i in range(self.X.shape[1]):
            for j in self.feature_dict[i]:
                pass#print self.Gini(X,y,i,j)
        pass
 
    def Gini(self,X,y,k,k_v):
        if (self.property[k]==0):
            #print X[X[:,k]==k_v],'dasasdasdasd'
            #print X[:,k]!=k_v
            c1 = (X[X[:,k]==k_v]).shape[0]
            c2 = (X[X[:,k]!=k_v]).shape[0]
            D = y.shape[0]
            return c1*pGini(y[X[:,k]==k_v])/D+c2*pGini(y[X[:,k]!=k_v])/D
        else:
            c1 = (X[X[:,k]>=k_v]).shape[0]
            c2 = (X[X[:,k]<k_v]).shape[0]
            D = y.shape[0]
            #print c1,c2,D
            return c1*pGini(y[X[:,k]>=k_v])/D+c2*pGini(y[X[:,k]<k_v])/D
        pass
    def makeTree(self,X,y):
        min=10000.0
        m_i,m_j=0,0
        if (np.unique(y).size<=1):
 
            return (self.labels[y[0]])
        for i in range(self.X.shape[1]):
            for j in self.feature_dict[i]:
                p=self.Gini(X,y,i,j)
                if (p<min):
                    min=p
                    m_i,m_j=i,j
        
        
 
        if (min==1):
            return (y[0])
        left=[]
        righy=[]
        if (self.property[m_i]==0):
            left = self.makeTree(X[X[:,m_i]==m_j],y[X[:,m_i]==m_j])
            right = self.makeTree(X[X[:,m_i]!=m_j],y[X[:,m_i]!=m_j])
        else :
            left = self.makeTree(X[X[:,m_i]>=m_j],y[X[:,m_i]>=m_j])
            right = self.makeTree(X[X[:,m_i]<m_j],y[X[:,m_i]<m_j])
        return [(m_i,m_j),left,right]
    def train(self):
        self.DT=self.makeTree(self.X,self.y)
        print self.DT
        
    def pred(self,X):
        X=np.array(X)
          
        result = np.zeros((X.shape[0],1))
        for i in range(X.shape[0]):
            tp=self.DT
            while ( type(tp) is  list):
                a,b=tp[0]
                
                if (self.property[a]==0):
                    if (X[i][a]==b):
                        tp=tp[1]
                    else:
                        tp=tp[2]
                else:
                    if (X[i][a]>=b):
                        tp=tp[1]
                    else:
                        tp=tp[2]
            result[i]=self.labels[tp]
        return result
        pass

               这个maketree让我想起了线段树………………代码里的变量基本都有说明
试验代码:

  

from __future__ import division
import numpy as np
import scipy as sp
from dml.DT import DTC
X=np.array([
[0,0,0,0,8],
[0,0,0,1,3.5],
[0,1,0,1,3.5],
[0,1,1,0,3.5],
[0,0,0,0,3.5],
[1,0,0,0,3.5],
[1,0,0,1,3.5],
[1,1,1,1,2],
[1,0,1,2,3.5],
[1,0,1,2,3.5],
[2,0,1,2,3.5],
[2,0,1,1,3.5],
[2,1,0,1,3.5],
[2,1,0,2,3.5],
[2,0,0,0,10],
])
 
 
y=np.array([
[1],
[0],
[1],
[1],
[0],
[0],
[0],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
[1],
])
prop=np.zeros((5,1))
prop[4]=1
a=DTC(X,y,prop)
a.train()
print a.pred([[0,0,0,0,3.0],[2,1,0,1,2]])

可以看到可以学习出一个决策树:

展示出来大概是这样:注意第四个参数是连续变量
原文:https://blog.csdn.net/dark_scope/article/details/13168827 
 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值