数列 | 数学专项

日期内容
2024.9.13真题、例题,数列公式
2024.9.18等差数列,等比数列
2024.9.19数列中的特例法
2024.9.19第一轮导学结束

【1.历年真题】

【2010.13】等比数列 a n {a_n} an中, a 3 , a 8 a_3,a_8 a3,a8是方程 3 x 2 + 2 x − 18 3x^2+2x-18 3x2+2x18的两个根,则 a 4 a 7 = a4a7= a4a7=()
A.-9
B.-8
C.-6
D.6
E.8
解题:

题干有方程的两个根,优先想到韦达定理,不要先用因式分解!
韦达定理: a 3 a 8 = c a = − 18 3 = − 6 a_3a_8=\frac{c}{a}=\frac{-18}{3}=-6 a3a8=ac=318=6
a 3 a 8 = a 4 a 7 = − 6 a_3a_8=a_4a_7=-6 a3a8=a4a7=6
答案C

【2011.06】若等比数列{ a n a_n an}满足 a 2 a 4 + 2 a 3 a 5 + a 2 a 8 = 25 a_2a_4+2a_3a_5+a2_a8=25 a2a4+2a3a5+a2a8=25 a 1 > 0 a_1>0 a1>0 a 3 + a 5 = a_3+a_5= a3+a5=()
A.8
B.5
C.2
D.-2
E.-5
解题:

等比条件单一条件,设 q = 1 , 则 a 2 a 4 + 2 a 3 a 5 + a 2 a 8 = t 2 + 2 t 2 + t 2 = 4 t 2 = 25 q=1,则a_2a_4+2a_3a_5+a2_a8=t^2+2t^2+t^2=4t^2=25 q=1,a2a4+2a3a5+a2a8=t2+2t2+t2=4t2=25
t = 5 2 t=\frac{5}{2} t=25
a 3 + a 5 = 2 t = 2 5 2 = 5 a_3+a_5=2t=2\frac{5}{2}=5 a3+a5=2t=225=5
答案B

【2011.09】若等差数列{ a n a_n an}满足 5 a 7 − a 3 − 12 = 0 5a_7-a_3-12=0 5a7a312=0 Σ k = 1 15 a k = Σ_{k=1}^{15}a_k= Σk=115ak=()
A.15
B.24
C.30
D.45
E.60
解题:

等差条件单一条件,设 d = 0 , 则 5 a 7 − a 3 − 12 = 0 = 5 t − 5 − 12 = 0 d=0,则5a_7-a_3-12=0=5t-5-12=0 d=0,5a7a312=0=5t512=0
t = 3 t=3 t=3
Σ k = 1 15 a k = 15 t = 45 Σ_{k=1}^{15}a_k=15t=45 Σk=115ak=15t=45
答案D

【2016.24】已知数列 a 1 , a 2 , a 3 . . . . . . a 10 , 则 a 1 − a 2 + a 3 − a 4 + . . . . . . a 9 − a 10 ≥ 0. a_1,a_2,a_3......a_{10},则a_1-a_2+a_3-a_4+......a_9-a_{10}≥0. a1,a2,a3......a10,a1a2+a3a4+......a9a100.()
(1) a n ≥ a n + 1 , n = 1 , 2 , 3......9. a_n≥a_{n+1},n=1,2,3......9. anan+1,n=1,2,3......9.
(2) a n 2 ≥ a n + 1 2 , n = 1 , 2 , 3......9. {a_n}^2≥a_{n+1^2},n=1,2,3......9. an2an+12,n=1,2,3......9.

解题:
将题干公式 a 1 − a 2 + a 3 − a 4 + . . . . . . a 9 − a 10 ≥ 0 a_1-a_2+a_3-a_4+......a_9-a_{10}≥0 a1a2+a3a4+......a9a100转化为

( a 1 − a 2 ) + ( a 3 − a 4 ) + . . . . . . ( a 9 − a 10 ) ≥ 0. (a_1-a_2)+(a_3-a_4)+......(a_9-a_{10})≥0. a1a2)+(a3a4)+......(a9a10)0.
条件(1) a n ≥ a n + 1 a_n≥a_{n+1} anan+1,则 a 1 ≥ a 2 , . . . . . a 9 ≥ a 10 a_1≥a_2,.....a_9≥a_{10} a1a2,.....a9a10,条件(1)充分。
条件(2) a n 2 ≥ a n + 1 2 {a_n}^2≥a_{n+1^2} an2an+12分解为 ( a n − a n + 1 ) ( a n + a n + 1 ) ≥ 0. (a_n-a_{n+1})(a_n+a_{n+1})≥0. (anan+1)(an+an+1)0.
只能证明两项符号相等。条件(2)不充分。
答案A

【2021.02】三位年轻人的年龄成等差数列,且最大与最小两人年龄差的10倍是另一个人的年龄,则三人年龄最大的是()
A.19
B.20
C.21
D.22
E.23

解题:
{ 设 b − d , b , b + d a b c ,则有 2 b = a + c ,根据题干 ( b + d ) − ( b − d ) = 10 b , b = 20 d . \begin{cases} 设b-d,b,b+d\\ abc,则有2b=a+c\\ \end{cases},根据题干(b+d)-(b-d)=10b,b=20d. {bdbb+dabc,则有2b=a+c,根据题干(b+d)(bd)=10b,b=20d.
三人年龄分别为19d,20d,21d,当d=1时,最大为21岁
答案C
技巧:把19,20,21,22,23排一列,根据题干找关系

【2013.13】已知 a n {a_n} an为等差数列,若 a 2 a_2 a2 a 10 a_{10} a10是方程 x 2 − 10 x − 9 = 0 x^2-10x-9=0 x210x9=0的两个根,则 a 5 + a 7 = a_5+a7= a5+a7=()
A.-10
B.-9
C.9
D.10
E.12
解题:

韦达定理: a 2 + a 10 = − b a = − − 10 1 = 10 a_2+a_{10}=-\frac{b}{a}=-\frac{-10}{1}=10 a2+a10=ab=110=10
a 5 + a 7 = a 2 + a 10 a_5+a_7=a_2+a_{10} a5+a7=a2+a10
答案D

【2013.07】已知{ a n a_n an}为等差数列,且 a 2 − a 5 + a 8 = 9 a_2-a_5+a_8=9 a2a5+a8=9 a 1 + a 2 + . . . a 9 = a_1+a_2+...a_9= a1+a2+...a9=()
A.27
B.45
C.54
D.81
E.162
解题:

等差条件单一条件,设 d = 0 , 则 a 9 = 9 d=0,则a_9=9 d=0,a9=9
数列{ a n a_n an}为每一项为9的常数列
9 ∗ 9 = 81 9*9=81 99=81
答案D

【2018.17】已知数列 a n a_n an为等差数列,则被能确定 a 2 , a 3 . . . . . . a 9 a_2,a_3......a_9 a2,a3......a9的值()
(1)已知 a 1 a_1 a1的值.
(2)已知 a 5 a_5 a5的值.

解题:
S 9 = 9 a 5 S_9=9a_5 S9=9a5
答案B

【2009.15】{ a n a_n an}的前 n n n项和 S n S_n Sn与{ b n b_n bn}的前 n n n项和 T n T_n Tn满足 S 19 : T 19 = 3 : 2 S_{19}:T_{19}=3:2 S19:T19=3:2( ).
(1){ a n a_n an}和{ b n b_n bn}是等差数列.
(2) a 10 : b 10 = 3 : 2 a_{10}:b_{10}=3:2 a10:b10=3:2.

解题:
条件(1)不充分,条件(2)不充分,信息单独不完全,需要联合
条件(1)定性为等差数列。
条件(2) S 19 = 19 a 10 、 T 19 = 19 b 10 S_{19}=19a_{10}、T_{19}=19b_{10} S19=19a10T19=19b10定量
定性+定量=联合选C
答案C

【2021.24】已知数列{ a n a_n an},则数列{ a n a_n an}为等比数列( ).
(1) a n a n + 1 > 0 a_na_{n+1}>0 anan+1>0.
(2) a n + 1 2 − 2 a n 2 − a n a n + 1 = 0 a_{n+1}^2-2a_n^2-a_na_{n+1}=0 an+122an2anan+1=0.

解题:
条件(1) a n a n + 1 > 0 a_na_{n+1}>0 anan+1>0仅知道数列每一项非零且相邻两项同号,不能证明是等比数列,单独不充分。
条件(2) a n + 1 2 − 2 a n 2 − a n a n + 1 = 0 a_{n+1}^2-2a_n^2-a_na_{n+1}=0 an+122an2anan+1=0.十字相乘因式分解
( a n + 1 + a n ) ( a n + 1 − 2 a n ) = 0 (a_{n+1}+a_n)(a_{n+1}-2a_n)=0 (an+1+an)(an+12an)=0
解得 a n + 1 = 2 a n a_{n+1}=2a_n an+1=2an a n + 1 = − a n a_{n+1}=-a_n an+1=an
因为无法判断 a n 的符号, a_n的符号, an的符号,条件(2)单独不充分。
联合条件(1)和(2) a n + 1 a n = 2 或 a n + 1 a n = − 1 \frac{a_{n+1}}{a_n}=2或\frac{a_{n+1}}{a_n}=-1 anan+1=2anan+1=1
a n ≠ 0 且 a n + 1 + a n ≠ 0 a_n≠0且a_{n+1}+a_n≠0 an=0an+1+an=0仅可能 a n + 1 − 2 a n = 0 , a n + 1 a n = 2 a_{n+1}-2a_n=0,\frac{a_{n+1}}{a_n}=2 an+12an=0,anan+1=2
联合充分
答案C

【2023.24】设数列{ a n a_n an}的前 n n n项和 S n S_n Sn,则 a 2 , a 3 , a 4 . . . . a_2,a_3,a_4.... a2,a3,a4....为等比数列( ).
(1) S n + 1 > S n S_{n+1}>S_n Sn+1>Sn.
(2){ S n S_n Sn}是等比数列.

解题:
条件(1) S n + 1 > S n 、 S n + 1 − S n = a n + 1 > 0 S_{n+1}>S_n、S_{n+1}-S_n=a_{n+1}>0 Sn+1>SnSn+1Sn=an+1>0仅证明数列为正数,单独不充分.
条件(2)设数列{ a n a_n an}为1.0.0.0…、满足数列{ S n S_n Sn}为等比数列,每项均为1.
a 2 , a 3 , a 4 . . . . a_2,a_3,a_4.... a2,a3,a4....,均为 0 0 0,非等比数列,单独不充分.
联合两条件:则当 n ≥ 2 n≥2 n2时,{ a n a_n an}为等比数列,联合充分.
因为条件(2){ S n S_n Sn}是等比数列,则有 S n + 1 = q S n S_{n+1}=qS_n Sn+1=qSn S n = q S n − 1 S_{n}=qS_{n-1} Sn=qSn1
n ≥ 2 n≥2 n2时, a n + 1 = S n + 1 − S n = q S n − q S n − 1 = q ( S n − S n − 1 ) = q a n a_{n+1}=S_{n+1}-S_n =qS_n-qS_{n-1}=q({S_n-S_{n-1}})=qa_n an+1=Sn+1Sn=qSnqSn1=qSnSn1=qan
那么 a n + 1 = q a n a_{n+1}=qa_n an+1=qan,此时{ a n a_n an}为等比数列
定性+定量=联合选C
答案C
解题技巧:两个条件,“>”不等号一般表示定性,“=”等号表示定量

【2023.18】已知等比数列{ a n a_n an}的公比大于1,则{ a n a_n an}递增( ).
(1) a 1 a_1 a1是方程 x 2 − x − 2 = 0 x^2-x-2=0 x2x2=0的根.
(2) a 1 a_1 a1是方程 x 2 + x − 6 = 0 x^2+x-6=0 x2+x6=0的根.

解题:
公比大于1,则数列{ a n a_n an}递增,实际需要证明{ a n a_n an} > 0 >0 >0
公比 > 1 >1 >1可以认为是一个放大器, a 1 为正数,则 a n 越大 . a 1 为负数,则 a n 越小 . a_1为正数,则a_n越大.a_1为负数,则a_n越小. a1为正数,则an越大.a1为负数,则an越小.
条件(1) a 1 2 − a 1 − 2 = 0 a_1^2-a_1-2=0 a12a12=0
因式分解 ( a 1 − 2 ) ( a 1 + 1 ) = 0 (a_1-2)(a_1+1)=0 (a12)(a1+1)=0、解的 a 1 = 2 或 − 1 a_1=2或-1 a1=21、单独不充分
条件(2) a 1 2 + a 1 − 6 = 0 a_1^2+a_1-6=0 a12+a16=0
因式分解 ( a 1 − 2 ) ( a 1 + 3 ) = 0 (a_1-2)(a_1+3)=0 (a12)(a1+3)=0、解的 a 1 = 2 或 − 3 a_1=2或-3 a1=23、单独不充分
联合可得 a 1 = 2 a_1=2 a1=2,数列递增,则联合充分
答案C

【2.MBA大师例题】

【例题1】设{ a n a_n an}是等比数列,则 a 2 = 2 a_2=2 a2=2.()
(1) a 1 + a 3 = 5. a_1+a_3=5. a1+a3=5.
(2) a 1 a 3 = 4. a_1a_3=4. a1a3=4.

解题:
条件(1) a 1 + a 3 = 5. a_1+a_3=5. a1+a3=5. 有无数种情况,不充分。
条件(2) a 1 a 3 = 4. 根据 a 2 2 = a 1 a 3 = 4 , 那么 a 2 = ± 2 a_1a_3=4.根据{a_2}^2=a_1a_3=4,那么a_2=±2 a1a3=4.根据a22=a1a3=4,那么a2=±2,不充分
联合考虑,也不充分。
答案E
如果在条件(1) a 1 + a 3 = 5. 中添加 a n > 9 , 则联合选 C a_1+a_3=5.中添加a_n>9,则联合选C a1+a3=5.中添加an>9,则联合选C

【例题2】甲,乙,丙三人年龄相同.()
(1)甲,乙,丙的年龄成等差数列。
(2)甲,乙,丙的年龄成等比数列。
解题:

联合考虑。
答案C
是等差也是等比的数列为非零常数列,它们的公比为1 ,公差为0

【例题3】已知数列 a n {a_n} an为等差数列,其中 a 2015 = 57 , a 2021 = 75 a_{2015}=57,a_{2021}=75 a2015=57,a2021=75则()
(1)公差 d = ? d=? d=?
(2)通项 a n = ? a_n=? an=?
解题:

条件(1)求公差 d = ( a n − a m ) n − m = ( 75 − 57 ) 2021 − 2015 = 3 d=\frac{(a_n-a_m)}{n-m}=\frac{(75-57)}{2021-2015}=3 d=nm(anam)=20212015(7557)=3
条件(2) a n = a m + ( n − m ) d = a 2015 + 3 ( n − 2015 ) = 3 n − 5988 a_n = a_m+(n-m)d=a_{2015}+3(n-2015)=3n-5988 an=am+(nm)d=a2015+3(n2015)=3n5988

【例题4】已知数列 a n {a_n} an为等差数列,其中 a 1 + a 7 = 8 a_1+a_7=8 a1+a7=8 a 4 = a_4= a4=()
解题:

a 1 + a 7 = a 4 + a 4 = 8 , 则 a 4 = 4 a_1+a_7=a_4+a_4=8,则a_4=4 a1+a7=a4+a4=8,a4=4

【例题5】已知数列 a n {a_n} an为等差数列,其中 a 1 + a 7 = 8 , a 6 = 5 a_1+a_7=8,a_6=5 a1+a7=8a6=5 a 8 = a_8= a8=()
解题:

a 1 + a 7 = a 6 + a 2 = 8 , 则 a 4 = 4 a_1+a_7=a_6+a_2=8,则a_4=4 a1+a7=a6+a2=8,a4=4
a 4 + a 8 = a 6 + a 6 , 则 a 8 = 6 a_4+a_8=a_6+a_6,则a_8=6 a4+a8=a6+a6,a8=6

【例题6】已知数列 a n a_n an为等差数列,则被能确定 a 2 , a 3 . . . . . . a 9 a_2,a_3......a_9 a2,a3......a9的值()
(1)已知 a 1 a_1 a1的值.
(2)已知 a 4 + a 6 a_4+a_6 a4+a6的值.

解题:
S 9 = 9 a 5 = a 4 + a 6 S_9=9a_5=a_4+a_6 S9=9a5=a4+a6
答案B

【例题7】已知数列 a n a_n an为等差数列,则被能确定 a 2 , a 3 . . . . . . a 9 a_2,a_3......a_9 a2,a3......a9的值()
(1)已知 a 1 a_1 a1的值.
(2)已知 a 6 a_6 a6的值.

解题:
联合,先求公差 d d d
a 6 − a 1 = 5 d a_6-a_1=5d a6a1=5d
n a 1 + n ( n − 1 ) 2 d na_1+\frac{n(n-1)}{2}d na1+2n(n1)d
答案C

【例题8】已知 a 8 = 11 、 a 13 = 21 a_8=11、a_{13}=21 a8=11a13=21 S 15 和 S 20 S_{15}和S_{20} S15S20分别是()
A.165,320
B.165,340
C.185,300
D.185,320
E.205,320

解题:
联合,先求公差 d d d
S 15 = 15 a 8 = 15 ∗ 11 = 165 S_{15}=15a_8=15*11=165 S15=15a8=1511=165
S 20 = 10 ( a 10 + a 11 ) = 10 ( a 8 + a 13 ) = 320 S_{20}=10(a_{10}+a_{11})=10(a_{8}+a_{13})=320 S20=10(a10+a11)=10(a8+a13)=320
答案A

【例题9】等差数列{ a n a_n an}和{ b n b_n bn}的前 n n n项和分别为 S n , T n S_n,T_n Sn,Tn S n T n = 2 n 3 n + 1 \frac{S_n}{T_n}=\frac{2n}{3n+1} TnSn=3n+12n a 7 b 7 \frac{a_7}{b_7} b7a7()
A.- 13 20 \frac{13}{20} 2013
B. 13 20 \frac{13}{20} 2013
C. 13 10 \frac{13}{10} 1013
D. 1 3 \frac{1}{3} 31
E. 15 23 \frac{15}{23} 2315

解题:
S 13 = 13 a 7 、 T 13 = 13 b 7 S_{13}=13a_7、T_{13}=13b_7 S13=13a7T13=13b7
a 7 b 7 = 13 a 7 13 b 7 = S 13 T 13 \frac{a_7}{b_7}=\frac{13a_7}{13b_7}=\frac{S_{13}}{T_{13}} b7a7=13b713a7=T13S13
n = 13 n=13 n=13代入得 S 13 T 13 = 2 n 3 n + 1 = 13 20 \frac{S_{13}}{T_{13}}=\frac{2n}{3n+1}=\frac{13}{20} T13S13=3n+12n=2013
答案B

【例题10】等差数列{ a n a_n an}和{ b n b_n bn}的前 n n n项和分别为 S n , T n S_n,T_n Sn,Tn S n T n = 2 n 3 n + 1 \frac{S_n}{T_n}=\frac{2n}{3n+1} TnSn=3n+12n a 8 b 8 \frac{a_8}{b_8} b8a8()
A.- 13 20 \frac{13}{20} 2013
B. 13 20 \frac{13}{20} 2013
C. 13 10 \frac{13}{10} 1013
D. 1 3 \frac{1}{3} 31
E. 15 23 \frac{15}{23} 2315

解题:
S 15 = 15 a 8 、 T 15 = 15 b 8 S_{15}=15a_8、T_{15}=15b_8 S15=15a8T15=15b8
a 8 b 8 = 15 a 8 15 b 8 = S 15 T 15 \frac{a_8}{b_8}=\frac{15a_8}{15b_8}=\frac{S_{15}}{T_{15}} b8a8=15b815a8=T15S15
n = 15 n=15 n=15代入得 S 15 T 15 = 2 n 3 n + 1 = 30 46 \frac{S_{15}}{T_{15}}=\frac{2n}{3n+1}=\frac{30}{46} T15S15=3n+12n=4630
答案E

【例题11】已知等比数列{ a n a_n an},公比 q = − 2 q=-2 q=2,前 6 6 6项和 S 6 = − 42 S_6=-42 S6=42 a 3 a_3 a3()
解题:
S 6 = a 1 1 − q 2 1 − q = a 1 1 − ( − 2 ) 2 1 + 2 = − 42 、 a 1 = 2 S_6=a_1\frac{1-q^2}{1-q}=a_1\frac{1-(-2)^2}{1+2}=-42、a_1=2 S6=a11q1q2=a11+21(2)2=42a1=2
a 3 = a 1 q 2 = 2 ∗ ( − 2 ) 2 = 8 a_3=a_1q^2=2*(-2)^2=8 a3=a1q2=2(2)2=8

【例题12】等差数列{ a n a_n an}的前 n n n项和为 S n , d ≠ 0 S_n,d≠0 Snd=0 S 6 = a 6 S_6=a_6 S6=a6 a 5 a 4 \frac{a_5}{a_4} a4a5的值为___.
解题:
等差数列+单一条件
S 6 = a 1 + a 2 + a 3 + a 4 + a 5 + a 6 = a 6 S_6=a_1+a_2+a_3+a_4+a_5+a_6=a_6 S6=a1+a2+a3+a4+a5+a6=a6
a 1 + a 2 + a 3 + a 4 + a 5 = 0 a_1+a_2+a_3+a_4+a_5=0 a1+a2+a3+a4+a5=0
假设数列前5项为-2,-1,0,1,2
a 5 a 4 = 2 1 \frac{a_5}{a_4}=\frac{2}{1} a4a5=12
答案:2

【例题13】等差数列{ a n a_n an}的公差 d > 0 d>0 d>0,若 a 1 + a 2 + a 3 = 15 、 a 1 a 2 a 3 = 80 a_1+a_2+a_3=15、a_1a_2a_3=80 a1+a2+a3=15a1a2a3=80,则 a 11 + a 12 + a 13 = a_{11}+a_{12}+a_{13}= a11+a12+a13=( ).
A.120
B.105
C.90
D.75
E.60

解题:
等差数列+不具体
a 1 a 2 a 3 = 80 因式分解 a_1a_2a_3=80因式分解 a1a2a3=80因式分解
80 = 40 ∗ 2 = 8 ∗ 5 ∗ 2 ,满足 a 1 + a 2 + a 3 = 15 80=40*2=8*5*2,满足a_1+a_2+a_3=15 80=402=852,满足a1+a2+a3=15
d = 3 d=3 d=3
a 11 + a 12 + a 13 = a 1 + 10 d + a 1 + 11 d + a 1 + 12 d = 3 a 1 + 33 d = 105 a_{11}+a_{12}+a_{13}=a_1+10d+a_1+11d+a_1+12d=3a_1+33d=105 a11+a12+a13=a1+10d+a1+11d+a1+12d=3a1+33d=105
答案:B

【3.三项数列公式】

三项数列abc等差数列(d为公差)
{ b − d 、 b 、 b + d 成等差数列,自动满足 2 b = a + c \begin{cases} b-d、b、b+d成等差数列,自动满足\\ 2b=a+c\\ \end{cases} {bdbb+d成等差数列,自动满足2b=a+c
三项数列abc等比数列(b≠0)
b 2 = a c b^2=ac b2=ac

【4.等差数列】

等差数列
等差数列通项公式: a n = a 1 + ( n − 1 ) d a_n=a_1+(n-1)d an=a1+(n1)d
{ d > 0 , 递增数列 d < 0 , 递减数列 d = 0 ,常数列 \begin{cases} d>0,递增数列\\ d<0,递减数列\\ d=0,常数列 \end{cases} d>0,递增数列d<0,递减数列d=0,常数列
等差数列前 n n n项和 S n S_n Sn
S n = a 1 + a 2 + . . . . . . a n = n ( a 1 + a n ) 2 = n a 1 + n ( n − 1 ) 2 d S_n=a_1+a_2+......a_n=\frac{n(a_1+a_n)}{2}=na_1+\frac{n(n-1)}{2}d Sn=a1+a2+......an=2n(a1+an)=na1+2n(n1)d
求中间项和
a 3 + a 4 + a 5 = S 5 − S 2 a_3+a_4+a_5 = S_5-S_2 a3+a4+a5=S5S2
下标关系
a 5 − a 2 = ( 5 − 2 ) d a_5-a_2=(5-2)d a5a2=(52)d
a 4 + a 6 = a 5 + a 5 = a 2 + a 8 a_4+a_6 = a_5+a_5=a_2+a_8 a4+a6=a5+a5=a2+a8
a 3 + a 5 + a 7 = a 2 + a 4 + a 9 = 3 a 1 + 12 d a_3+a_5+a_7=a_2+a_4+a_9=3a_1+12d a3+a5+a7=a2+a4+a9=3a1+12d
奇数项
S 9 = 9 a 5 、 S 11 = 11 a 6 S_9=9a_5、S_{11}=11a_6 S9=9a5S11=11a6
偶数项
S 10 = 5 ( a 5 + a 6 ) 、 S 8 = 4 ( a 4 + a 5 ) S_{10}=5(a_5+a_6)、S_8=4(a_4+a_5) S10=5(a5+a6)S8=4(a4+a5)

等比数列(任意一项和公比不为0, a n ≠ 0 、 q ≠ 0 a_n≠0、q≠0 an=0q=0)
常见等比数列 { 2 、 4 、 8 、 16 、 32... ( q = 2 ) 2 、 2 、 2 2 、 4 、 4 2 . . . ( q = 2 ) 1 、 1 3 、 1 9 、 1 27 、 1 81 . . . ( d = 1 3 ) 1 、 − 1 、 1 、 − 1 、 1... ( q = − 1 ) \begin{cases} 2、4、8、16、32...(q=2)\\ \sqrt 2、2、2\sqrt 2、4、4\sqrt 2...(q=\sqrt 2)\\ 1、\frac{1}{3}、\frac{1}{9}、\frac{1}{27}、\frac{1}{81}... (d=\frac{1}{3})\\ 1、-1、1、-1、1...(q=-1) \end{cases} 2481632...(q=22 222 442 ...(q=2 )13191271811...(d=31)11111...(q=1)
拓展
若{ a n a_n an}为等比数列,则{ 1 a n \frac{1}{a_n} an1}、{ ∣ a n ∣ |a_n| an}、{ a n 2 a_n^2 an2}均为等比数列.公比分别为: 1 q 、 ∣ q ∣ 、 q 2 \frac{1}{q}、|q|、q^2 q1qq2.
{ a n → 1 、 − 2 、 4 、 − 16 、 32... ( q = − 2 ) 1 a n → 1 、 − 1 2 、 1 4 、 − 1 8 、 1 16 . . . ( d = − 1 2 ) ∣ a n ∣ → 1 、 2 、 4 、 8 、 16... ( d = 2 ) a n 2 → 1 、 4 、 16 、 256 、 1024... ( q = 4 ) \begin{cases} a_n→1、-2、4、-16、32...(q=-2)\\ \frac{1}{a_n}→1、-\frac{1}{2}、\frac{1}{4}、-\frac{1}{8}、\frac{1}{16}... (d=-\frac{1}{2})\\ |a_n|→1、2、4、8、16... (d=2)\\ a_n^2→1、4、16、256、1024...(q=4) \end{cases} an1241632...(q=2an11214181161...(d=21)an124816...(d=2)an214162561024...(q=4)
等比数列通项公式: a n = a 1 q n − 1 ( q ≠ 0 ) a_n=a_1q^{n-1}(q≠0) an=a1qn1(q=0)
等比数列前 n n n项和 S n S_n Sn
(1)当 q ≠ 1 q≠1 q=1 S n = a 1 ( 1 − q n ) 1 − q S_n=\frac{a_1(1-q^n)}{1-q} Sn=1qa1(1qn)
(2)当 q = 1 q=1 q=1 S n = n a 1 S_n=na_1 Sn=na1、此时为常数列
(3)当 n → ∞ 、且 0 < ∣ q ∣ < 1 时, S n = a 1 1 − q n→∞、且0<|q|<1时,S_n=\frac{a_1}{1-q} n、且0<q<1时,Sn=1qa1
公比为 1 2 \frac{1}{2} 21的前 S n 和为首项 2 倍 S_n和为首项2倍 Sn和为首项2
等比数列{ a n a_n an}单调性
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
下标关系
a 5 a 2 = q 5 − 2 \frac{a_5}{a_2}=q^{5-2} a2a5=q52
a 2 q 3 = a 5 a_2q^3=a_5 a2q3=a5
a 5 a 5 = a 4 a 6 = a 3 a 7 a_5a_5=a_4a_6=a_3a_7 a5a5=a4a6=a3a7
a 3 a 5 a 7 = a 1 3 q 12 a_3a_5a_7=a_1^3q^{12} a3a5a7=a13q12

【5.数列中的特例法】

等差数列确定条件
a 1 (或某项)的值, d 的值 a_1(或某项)的值,d的值 a1(或某项)的值,d的值
a n = a 1 + ( n − 1 ) d a_n=a_1+(n-1)d an=a1+(n1)d
等比数列确定条件
a 1 (或某项)的值, q 的值 a_1(或某项)的值,q的值 a1(或某项)的值,q的值
a n = a 1 q n − 1 a_n=a_1q^{n-1} an=a1qn1
典型不具体的数列
单一限制条件的等差/等比数列→设成常数列或特殊数列
等差数列: 设数列{ a n a_n an}为公差 d = 0 d=0 d=0的常数列,每一项都相等.
等比数列: 设数列{ a n a_n an}为公比 q = 1 q=1 q=1的非零常数列,每一项都相等.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老秦和梁思考

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值