2016纽约市出租车出行预测实战(回归任务 附代码+数据集 结合天气及油价数据集)

一、引言

        在此次实战中,本文将会使用纽约市出租车出行数据据集[1],对应的天气数据集[2]和油价数据集[3]来构建回归模型,以预测纽约市出租车出行的总时间。
        除了上下车经纬度、载客人数等数据,出行时的天气情况和当时的油价情况也可能对出行时长造成影响, 故本文选择了kaggle网站上的纽约市出租车和豪华轿车委员会发布的2016年纽约市出租车出行时长数据集(即GPS数据,后称出租车数据集)、2016年纽约市天气数据集(后称天气数据集)和2016年纽约市油价数据集(后称油价数据集)来对出租车出行时长进行分析。
        2016年纽约市出租车出行时长数据集有1458644行,包括10个变量、2016年纽约市天气数据集有10449 行,包括30个变量、2016年纽约市油价数据集有52行,包括2个变量,如表1与2所示。

表1

属性含义
vendor_id指示与行程记录关联的提供者的代码
Pickup_datetime使用仪表的日期和时间
Pickup_longitude使用仪表的经度
dropoff_datetime仪表脱离的日期和时间
passenger_count车辆中的乘客数量
Pickup_latitude使用仪表的纬度
dropoff_longitude仪表脱离的经度
dropoff_latitude仪表脱离的纬度
store_and_fwd_flag行程记录之前是否保存在车辆内存中,- Y = 是;N=否
trip_duration旅行的持续时间(以秒为单位)

表 2

属性含义
wspdi风速(英里/小时)
windchilli华氏度的风寒
hail1-有冰雹 0-无冰雹
wgustm以公里/小时为单位的阵风
heatindexm热指数摄氏度
thunder1-有打雷 0-无打雷
wgusti以英里/小时为单位的阵风
heatindexi华氏温度指数
tornado1-有龙卷风 0-无龙卷风
hum湿度 %
pressurei压力inHg
rain1-有雨 0-无雨
datetime日期和时间(EST)
wdird以度为单位的风向
precipm以毫米为单位的降水量
tempm摄氏温度
wdire风向描述
precipi以英寸为单位的降水量
tempi华氏温度
vim以公里为单位的能见度
conds风、雪文字描述1
dewptm摄氏度露点
visi以英里为单位的能见度
icon风、雪文字描述2
dewpti华氏露点
pressurem以毫巴为单位的压力
fog有雾0-无雾
Date记录时的日期
Gdollars记录日期对应油价

二、数据合并

        首先将出行数据集,天气数据集和油价数据集进行合并。
        导入所需的库。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
from scipy import stats
import zipfile
import warnings
warnings.filterwarnings("ignore")

%matplotlib inline

plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

        读入数据

train = pd.read_csv(r"E:\project\taxiDuarion\train.zip", 
                    compression="zip", index_col="id")#出租车数据训练集
test = pd.read_csv(r"E:\project\taxiDuarion\test.zip",
                   compression="zip", index_col="id")#出租车数据测试集

Weather = pd.read_csv(r"E:\project\taxiDuarion\天气数据\Weather.csv")  #天气数据

gas = pd.read_csv(r"E:\project\taxiDuarion\油价数据\gasoline.csv")  #油价数据

        查看数据集情况,其中左上为出租车出行数据训练集,右上为出租车出行数据测试集,左下为天气数据集,右下为油价数据集,从中可以看出天气数据集可能存在大量异常值情况。

在这里插入图片描述
        首先构造一下时间的特征,以方便后续合并。

# 将上下车的时间转化为标准的datetime时间格式
train.pickup_datetime = pd.to_datetime(train.pickup_datetime)
train.dropoff_datetime = pd.to_datetime(train.dropoff_datetime)

test.pickup_datetime = pd.to_datetime(test.pickup_datetime)

Weather.pickup_datetime = pd.to_datetime(Weather.pickup_datetime)

gas.Date = pd.to_datetime(gas.Date)

#增加出租车时间信息特征
train['weekday'] = 0 #星期几
train['hour'] = 0 #开始出行小时
train['minute'] = 0 #开始出行分钟
train['month'] = 0 #开始出行时的月份
train['day'] = 0 #当月第几天
train['week'] = 0 #当月第几周
train['sesson'] = 0 #季节

test['weekday'] = 0 #星期几
test['hour'] = 0 #开始出行小时
test['minute'] = 0 #开始出行分钟
test['month'] = 0 #开始出行时的月份
test['day'] = 0 #当月第几天
test['week'] = 0 #当月第几周
test['sesson'] = 0 #季节


#增加天气数据的时间信息特征
Weather['hour'] = 0 #开始出行小时
Weather['month'] = 0 #开始出行时的月份
Weather['day'] = 0 #当月第几天

#增加油价的时间信息特征
gas['month'] = 0 #月份
gas['day'] = 0 #天
gas['week'] = 0 #当月第几周

#增加出租车时间信息特征
train['weekday'] = train.pickup_datetime.dt.weekday #星期几
train['weekday'] =  train['weekday']+1
train['hour'] = train.pickup_datetime.dt.hour #开始出行小时
train['minute'] = train.pickup_datetime.dt.minute #开始出行分钟
train['month'] = train.pickup_datetime.dt.month #开始出行时的月份
train['day'] = train.pickup_datetime.dt.day #当月第几天
train['week'] = ((train.pickup_datetime.dt.day)/7)+1 #当月第几个星期(1代表当月第一周)
train['sesson'] = (train.pickup_datetime.dt.month/4)+1 #季节 

test['weekday'] = test.pickup_datetime.dt.weekday #星期几
test['weekday'] =  test['weekday']+1
test['hour'] = test.pickup_datetime.dt.hour #开始出行小时
test['minute'] = test.pickup_datetime.dt.minute #开始出行分钟
test['month'] = test.pickup_datetime.dt.month #开始出行时的月份
test['day'] = test.pickup_datetime.dt.day #当月第几天
test['week'] = ((test.pickup_datetime.dt.day)/7)+1 #当月第几个星期(1代表当月第一周)
test['sesson'] = (test.pickup_datetime.dt.month/4)+1 #季节 

#增加天气时间信息特征
Weather['hour'] = Weather.pickup_datetime.dt.hour #开始出行小时
Weather['month'] = Weather.pickup_datetime.dt.month #开始出行时的月份
Weather['day'] = Weather.pickup_datetime.dt.day #当月第几天

#增加油价的时间信息特征
gas['month'] = gas.Date.dt.month #月份
gas['day'] = gas.Date.dt.day #天
gas['week'] = ((gas.Date.dt.day)/7)+1 #当月第几周

#下取整,得到星期数和季节数
train[["sesson"]] = train[["sesson"]].astype(int)
train[["week"]] = train[["week"]].astype(int)

test[["sesson"]] = test[["sesson"]].astype(int)
test[["week"]] = test[["week"]].astype(int)

gas[["week"]] = gas[["week"]].astype(int)

接下来做一些去重操作。

Weather=Weather.drop_duplicates(['hour','month','day'])  #去除重复行
gas=gas.drop_duplicates(['month','week'])  #去除重复行

然后根据小时 月份 天 链接天气数据。

df_train = pd.merge(train,Weather,how='left',on=['hour','month','day'])
df_test = pd.merge(test,Weather,how='left',on=['hour','month','day'])

接着根据月份和星期 链接油价数据。

out_train = pd.merge(df_train,gas,how='left',on=['month','week'])
out_test = pd.merge(df_test,gas,how='left',on=['month','week'])

删除掉一些没有用的特征,并导出合并后的数据集。

#删除时间变量等信息
del out_train['pickup_datetime_y']
del out_train['Date']
del out_train['day_y']

del out_test['pickup_datetime_y']
del out_test['Date']
del out_test['day_y']

out_train.to_csv(r"D:\A原始数据文件训练集(合并后).txt", sep='\t', index=False) 
out_test.to_csv(r"D:\A原始数据文件测试集集(合并后).txt", sep='\t', index=False) 

合并结果数据量为1458644,特征数有47,如下。

属性含义
vendor_id指示与行程记录关联的提供者的代码
Pickup_datetime使用仪表的日期和时间
Pickup_longitude使用仪表的经度
dropoff_datetime仪表脱离的日期和时间
passenger_count车辆中的乘客数量
Pickup_latitude使用仪表的纬度
dropoff_longitude仪表脱离的经度
dropoff_latitude仪表脱离的纬度
store_and_fwd_flag行程记录之前是否保存在车辆内存中, - Y = 是;N=否
datetime日期和时间(EST)
wdird以度为单位的风向
precipm以毫米为单位的降水量
tempm摄氏温度
wdire风向描述
precipi以英寸为单位的降水量
tempi华氏温度
vim以公里为单位的能见度
conds风、雪文字描述
dewptm摄氏度露点
visi以英里为单位的能见度
icon风、雪文字描述2
dewpti华氏露点
pressurem以毫巴为单位的压力
fog有雾0-无雾
hum湿度 %
pressurei压力inHg
rain1-有雨 0-无雨
wspdm以公里/小时为单位的风速
windchillm摄氏的风寒
snow1-有雪 0-无雪
wspdi风速(英里/小时)
windchilli华氏度的风寒
hail1-有冰雹0-无冰雹
wgustm以公里/小时为单位的阵风
heatindexm热指数摄氏度
thunder1-有打雷0-无打雷
wgusti以英里/小时为单位的阵风
Date记录时的日期
weekday记录日期对应周几
Gdollars记录日期对应油价
hour记录日期对应几点
minute记录日期对应几分
day_x记录日期对应当月第几天
week记录日期对应当月第几周
session记录日期对应季节
heatindexi华氏温度指数
tornado1-有龙卷风0-无龙卷风
trip_duration旅行的持续时间(以秒为单位)

三、特征工程

导入所需库及数据集。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from scipy import stats

import warnings
warnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
%matplotlib inline

pd.set_option('display.float_format', lambda x:'%.5f'%x) # 小数点后面保留5位小数,不以科学计数法显示
pd.set_option('display.max_columns', None)#显示全部列

train = pd.read_csv(r"D:\A原始数据文件训练集(合并后).txt", sep='\t', encoding='utf-8')
test = pd.read_csv(r"D:\A原始数据文件测试集集(合并后).txt", sep='\t', encoding='utf-8')
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

构建上下车位置对应街区特征。

#计算出上下车的区域。
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder

discrete_variable = [] #记录离散型变量

train_pickup_borough = []
for j,k in zip(train.pickup_longitude,train.pickup_latitude):
    if ((j>=-74.040269) and (j<=-73.865036)) and ((k>=40.574031) and (k<=40.736728)):
        train_pickup_borough.append('Brooklyn')
    elif ((j>=-74.245856) and (j<=-73.057562)) and ((k>=40.502863) and (k<=40.647234)):
        train_pickup_borough.append('Staten_island')
    elif ((j>=-74.011645) and (j<=-73.913772)) and ((k>=40.703384) and (k<=40.876058)):
        train_pickup_borough.append('Manhattan')
    elif ((j>=-73.931573) and (j<=-73.781473)) and ((k>=40.797766) and (k<=40.912460)):
        train_pickup_borough.append('Bronx')
    else: train_pickup_borough.append('Queens')
Borough_ptrain = pd.DataFrame(train_pickup_borough,columns=['pickup_borough'])
train = pd.concat([train,Borough_ptrain], axis=1)


test_pickup_borough = []
for g,h in zip(test.pickup_longitude,test.pickup_latitude):
    if ((g>=-74.040269) and (g<=-73.865036)) and ((h>=40.574031) and (h<=40.736728)):
        test_pickup_borough.append('Brooklyn')
    elif ((g>=-74.245856) and (g<=-73.057562)) and ((h>=40.502863) and (h<=40.647234)):
        test_pickup_borough.append('Staten_island')
    elif ((g>=-74.011645) and (g<=-73.913772)) and ((h>=40.703384) and (h<=40.876058)):
        test_pickup_borough.append('Manhattan')
    elif ((g>=-73.931573) and (g<=-73.781473)) and ((h>=40.797766) and (h<=40.912460)):
        test_pickup_borough.append('Bronx')
    else: test_pickup_borough.append('Queens')
Borough_ptest = pd.DataFrame(test_pickup_borough,columns=['pickup_borough'])
test = pd.concat([test,Borough_ptest],axis=1)


train_dropoff_borough = []
for d,f in zip(train.dropoff_longitude,train.dropoff_latitude):
    if ((d>=-74.040269) and (d<=-73.865036)) and ((f>=40.574031) and (f<=40.736728)):
        train_dropoff_borough.append('Brooklyn')
    elif ((d>=-74.245856) and (d<=-73.057562)) and ((f>=40.502863) and (f<=40.647234)):
        train_dropoff_borough.append('Staten_island')
    elif ((d>=-74.011645) and (d<=-73.913772)) and ((f>=40.703384) and (f<=40.876058)):
        train_dropoff_borough.append('Manhattan')
    elif ((d>=-73.931573) and (d<=-73.781473)) and ((f>=40.797766) and (f<=40.912460)):
        train_dropoff_borough.append('Bronx')
    else: train_dropoff_borough.append('Queens')
Borough_dtrain = pd.DataFrame(train_dropoff_borough,columns=['dropoff_borough'])
train = pd.concat([train,Borough_dtrain],axis=1)


test_dropoff_borough = []
for a,s in zip(test.dropoff_longitude,test.dropoff_latitude):
    if ((a>=-74.040269) and (a<=-73.865036)) and ((s>=40.574031) and (s<=40.736728)):
        test_dropoff_borough.append('Brooklyn')
    elif ((a>=-74.245856) and (a<=-73.057562)) and ((s>=40.502863) and (s<=40.647234)):
        test_dropoff_borough.append('Staten_island')
    elif ((a>=-74.011645) and (a<=-73.913772)) and ((s>=40.703384) and (s<=40.876058)):
        test_dropoff_borough.append('Manhattan')
    elif ((a>=-73.931573) and (a<=-73.781473)) and ((s>=40.797766) and (s<=40.912460)):
        test_dropoff_borough.append('Bronx')
    else: test_dropoff_borough.append('Queens')
Borough_dtest = pd.DataFrame(test_dropoff_borough,columns=['dropoff_borough'])
test = pd.concat([test,Borough_dtest],axis=1)

discrete_variable.append('dropoff_borough')
discrete_variable.append('pickup_borough')

对上下车位置特征进行编码。

train['pickup_borough'] = train['pickup_borough'].astype('str')
train['dropoff_borough'] = train['dropoff_borough'].astype('str')
test['pickup_borough'] = test['pickup_borough'].astype('str')
test['dropoff_borough'] = test['dropoff_borough'].astype('str')

encoder= LabelEncoder().fit(train['pickup_borough'])
train['pickup_borough'] = encoder.transform(train['pickup_borough'])
encoder= LabelEncoder().fit(train['dropoff_borough'])
train['dropoff_borough'] = encoder.transform(train['dropoff_borough'])

encoder= LabelEncoder().fit(test['pickup_borough'])
test['pickup_borough'] = encoder.transform(test['pickup_borough'])
encoder= LabelEncoder().fit(test['dropoff_borough'])
test['dropoff_borough'] = encoder.transform(test['dropoff_borough'])

对出行时长特征进行对数化处理。

train['trip_duration'] = np.log(train['trip_duration'].values)
plt.hist(train['trip_duration'].values, bins=100)
plt.xlabel('log(trip_duration)')
plt.ylabel('number of records')
plt.show()

在这里插入图片描述
查看出行时长变量的分布范围并对其异常值进行处理。

#查看预测变量的分布情况
plt.scatter(range(train.shape[0]),train['trip_duration'])
#框定范围
train = train[train.trip_duration<train.trip_duration.quantile(0.98)] 
train = train[train.trip_duration>train.trip_duration.quantile(0.01)]
plt.scatter(range(train.shape[0]),train['trip_duration'])

在这里插入图片描述
在这里插入图片描述
对离散型特征进行处理。

#记录离散型变量
discrete_variable.append('vendor_id')
discrete_variable.append('store_and_fwd_flag')
discrete_variable.append('wdire')
discrete_variable.append('conds')
discrete_variable.append('icon')
#转化为字符型
train['store_and_fwd_flag'] = train['store_and_fwd_flag'].astype('str')
train['wdire'] = train['wdire'].astype('str')
train['conds'] = train['conds'].astype('str')
train['icon'] = train['icon'].astype('str')

test['store_and_fwd_flag'] = test['store_and_fwd_flag'].astype('str')
test['wdire'] = test['wdire'].astype('str')
test['conds'] = test['conds'].astype('str')
test['icon'] = test['icon'].astype('str')

#将离散字符串变量转化为离散数值型变量
encoder= LabelEncoder().fit(train['wdire'])
train['wdire'] = encoder.transform(train['wdire'])
encoder= LabelEncoder().fit(train['store_and_fwd_flag'])
train['store_and_fwd_flag'] = encoder.transform(train['store_and_fwd_flag'])
encoder= LabelEncoder().fit(train['icon'])
train['icon'] = encoder.transform(train['icon'])
encoder= LabelEncoder().fit(train['conds'])
train['conds'] = encoder.transform(train['conds'])

#将离散字符串变量转化为离散数值型变量
encoder= LabelEncoder().fit(test['wdire'])
test['wdire'] = encoder.transform(test['wdire'])
encoder= LabelEncoder().fit(test['store_and_fwd_flag'])
test['store_and_fwd_flag'] = encoder.transform(test['store_and_fwd_flag'])
encoder= LabelEncoder().fit(test['icon'])
test['icon'] = encoder.transform(test['icon'])
encoder= LabelEncoder().fit(test['conds'])
test['conds'] = encoder.transform(test['conds'])

删除掉多余的特征,并处理经纬度中的异常值。

#处理异常值--经纬度

train = train[(train.pickup_longitude > -100.0 )]
train = train[(train.pickup_latitude <50.0 )]

train = train[(train.dropoff_longitude < -65.0 )]
train = train[(train.dropoff_latitude > 36.0 )]

根据上下车的经纬度信息构造距离特征。

#欧式距离

train['Euclide_D']=np.sqrt((train['pickup_longitude']-train['dropoff_longitude'])**2+(train['pickup_latitude']-train['dropoff_latitude'])**2)

#曼哈顿距离
train['Manhattan_D']=np.abs(train['pickup_latitude']-train['dropoff_latitude']) + np.abs(train['pickup_longitude']-train['dropoff_longitude'])

#半正矢公式距离

def haversine_(pick_lat, pick_lng, drop_lat, drop_lng):
    pick_lat, pick_lng, drop_lat, drop_lng = map(np.radians, (pick_lat, pick_lng, drop_lat, drop_lng))
    AVG_EARTH_RADIUS = 6371 #km
    lat = pick_lat - drop_lat
    lng = pick_lng - drop_lng
    distance = np.sin(lat/2)**2 + np.cos(pick_lat)*np.cos(drop_lat)*np.sin(lng/2)**2
    h = 2 * AVG_EARTH_RADIUS * np.arcsin(np.sqrt(distance))
    return h
train['Haversine_D'] = haversine_(train['pickup_latitude'].values,
                                              train['pickup_longitude'].values,
                                              train['dropoff_latitude'].values,
                                              train['dropoff_longitude'].values)

#欧式距离
test['Euclide_D']=np.sqrt((test['pickup_longitude']-test['dropoff_longitude'])**2+(test['pickup_latitude']-test['dropoff_latitude'])**2)

#曼哈顿距离
test['Manhattan_D']=np.abs(test['pickup_latitude']-test['dropoff_latitude']) + np.abs(test['pickup_longitude']-test['dropoff_longitude'])

#半正矢公式距离

def haversine_(pick_lat, pick_lng, drop_lat, drop_lng):
    pick_lat, pick_lng, drop_lat, drop_lng = map(np.radians, (pick_lat, pick_lng, drop_lat, drop_lng))
    AVG_EARTH_RADIUS = 6371 #km
    lat = pick_lat - drop_lat
    lng = pick_lng - drop_lng
    distance = np.sin(lat/2)**2 + np.cos(pick_lat)*np.cos(drop_lat)*np.sin(lng/2)**2
    h = 2 * AVG_EARTH_RADIUS * np.arcsin(np.sqrt(distance))
    return h
test['Haversine_D'] = haversine_(test['pickup_latitude'].values,
                                              test['pickup_longitude'].values,
                                              test['dropoff_latitude'].values,
                                              test['dropoff_longitude'].values)

再处理异常值。

#删除缺失值过多的特征:wgustm wgusti  windchillm windchilli heatindexm heatindexi  precipm precipi 
deleteCol = ['wgustm','wgusti','windchillm','windchilli','heatindexm','heatindexi','precipm','precipi']
#删除操作,删除8个缺失值过多的特征
train = train.drop(deleteCol, axis=1)  

#删除操作,删除8个缺失值过多的特征
test = test.drop(deleteCol, axis=1)  

#一些特征仅有少量缺失值,这里采取用中位数填补的措施
for column in list(train.columns):
    mean_val = train[column].mean()
    train[column].fillna(mean_val, inplace=True)

    
#一些特征仅有少量缺失值,这里采取用中位数填补的措施
for column in list(test.columns):
    mean_val = test[column].mean()
    test[column].fillna(mean_val, inplace=True)   

通过箱图查看特征分布情况。

# 画箱式图
column = train.columns.tolist()[:len(train.columns)]  # 列表头 将列转化为列表,每一列转化为一个列表保存
fig = plt.figure(figsize=(30, 60))  # 指定绘图对象宽度和高度
for i in range(len(train.columns)):
    plt.subplot(10, 5, i + 1)  # 13行3列子图
    sns.boxplot(train[column[i]], orient="v", width=0.6)  # 箱式图
    plt.ylabel(column[i], fontsize=8)
#     l,m,h = np.percentile(train[column[i]], (25, 50, 75), interpolation='midpoint')
#     print("特征:"+str(column[i]))
#     print("特征:"+str(column[i])+"的上四分位为:"+ str(h)+",下四分位数为:"+str(l))
#     print("特征:"+str(column[i])+"的上界为:"+ str((h+(h-l)*1.5))+",下界为:"+str((l-(h-l)*1.5)))
#     print("-------------------------------")
plt.show()

在这里插入图片描述
删除全0的特征。

#删除全0的特征
deleteCol = ['fog','rain','snow','hail','thunder','tornado']

train = train.drop(deleteCol, axis=1)  
test = test.drop(deleteCol, axis=1)  

对类别型变量进行哑变量处理。

#哑变量处理

weekday=pd.get_dummies(train['weekday'],sparse=True)

vendor_id=pd.get_dummies(train['vendor_id'],sparse=True)

month=pd.get_dummies(train['month'],sparse=True)

week=pd.get_dummies(train['week'],sparse=True)

conds=pd.get_dummies(train['conds'],sparse=True)

wdire=pd.get_dummies(train['wdire'],sparse=True)

icon=pd.get_dummies(train['icon'],sparse=True)

store_and_fwd_flag=pd.get_dummies(train['store_and_fwd_flag'],sparse=True)

pickup_borough = pd.get_dummies(train['pickup_borough'],sparse=True)

dropoff_borough = pd.get_dummies(train['dropoff_borough'],sparse=True)


Tweekday=pd.get_dummies(test['weekday'],sparse=True)

Tvendor_id=pd.get_dummies(test['vendor_id'],sparse=True)

Tmonth=pd.get_dummies(test['month'],sparse=True)

Tweek=pd.get_dummies(test['week'],sparse=True)

Tconds=pd.get_dummies(test['conds'],sparse=True)

Twdire=pd.get_dummies(test['wdire'],sparse=True)

Ticon=pd.get_dummies(test['icon'],sparse=True)

Tstore_and_fwd_flag=pd.get_dummies(test['store_and_fwd_flag'],sparse=True)

Tpickup_borough = pd.get_dummies(test['pickup_borough'],sparse=True)

Tdropoff_borough = pd.get_dummies(test['dropoff_borough'],sparse=True)

Onehot = ['周一','周二','周三','周四','周五','周六','周日','一月','二月','三月','四月','五月','六月','第一周','第二周','第三周','第四周','第五周','vendor_id_1','vendor_id_2','N','Y','conds1 ','conds2','conds3','conds4','conds5','conds6','conds7','conds8','conds9','conds10','conds11','conds12','conds13','conds14','conds15','icon1 ','icon2','icon3','icon4','icon5','icon6','icon7','icon8','icon9','icon10','wdire1 ','wdire2','wdire3','wdire4','wdire5','wdire6','wdire7','wdire8','wdire9','wdire10','wdire11','wdire12','wdire13','wdire14','wdire15','wdire16','wdire17','wdire18','pickup_borough1 ','pickup_borough2','pickup_borough3','pickup_borough4','pickup_borough5','dropoff_borough1 ','dropoff_borough2','dropoff_borough3','dropoff_borough4','dropoff_borough5']

weekday.columns = ['周一','周二','周三','周四','周五','周六','周日']
month.columns = ['一月','二月','三月','四月','五月','六月']
week.columns = ['第一周','第二周','第三周','第四周','第五周']
vendor_id.columns = ['vendor_id_1','vendor_id_2']
store_and_fwd_flag.columns = ['N','Y']
conds.columns = ['conds1 ','conds2','conds3','conds4','conds5','conds6','conds7','conds8','conds9','conds10','conds11','conds12','conds13','conds14','conds15']
icon.columns = ['icon1 ','icon2','icon3','icon4','icon5','icon6','icon7','icon8','icon9','icon10']
wdire.columns = ['wdire1 ','wdire2','wdire3','wdire4','wdire5','wdire6','wdire7','wdire8','wdire9','wdire10','wdire11','wdire12','wdire13','wdire14','wdire15','wdire16','wdire17','wdire18']
pickup_borough.columns = ['pickup_borough1 ','pickup_borough2','pickup_borough3','pickup_borough4','pickup_borough5']
dropoff_borough.columns = ['dropoff_borough1 ','dropoff_borough2','dropoff_borough3','dropoff_borough4','dropoff_borough5']


Tweekday.columns = ['周一','周二','周三','周四','周五','周六','周日']
Tmonth.columns = ['一月','二月','三月','四月','五月','六月']
Tweek.columns = ['第一周','第二周','第三周','第四周','第五周']
Tvendor_id.columns = ['vendor_id_1','vendor_id_2']
Tstore_and_fwd_flag.columns = ['N','Y']
Tconds.columns = ['conds1 ','conds2','conds3','conds4','conds5','conds6','conds7','conds8','conds9','conds10','conds11','conds12','conds13','conds14','conds15']
Ticon.columns = ['icon1 ','icon2','icon3','icon4','icon5','icon6','icon7','icon8','icon9','icon10']
Twdire.columns = ['wdire1 ','wdire2','wdire3','wdire4','wdire5','wdire6','wdire7','wdire8','wdire9','wdire10','wdire11','wdire12','wdire13','wdire14','wdire15','wdire16','wdire17','wdire18']
Tpickup_borough.columns = ['pickup_borough1 ','pickup_borough2','pickup_borough3','pickup_borough4','pickup_borough5']
Tdropoff_borough.columns = ['dropoff_borough1 ','dropoff_borough2','dropoff_borough3','dropoff_borough4','dropoff_borough5']
#存储离散型变量
discrete_variable.append('weekday')
discrete_variable.append('month')
discrete_variable.append('week')
del train['weekday']
del train['month']
del train['week']
del train['vendor_id']
del train['store_and_fwd_flag']
del train['conds']
del train['icon']
del train['wdire']
del train['pickup_borough']
del train['dropoff_borough']

del test['weekday']
del test['month']
del test['week']
del test['vendor_id']
del test['store_and_fwd_flag']
del test['conds']
del test['icon']
del test['wdire']
del test['pickup_borough']
del test['dropoff_borough']
train_afterOnehot = pd.concat([train,weekday,month,week,vendor_id,store_and_fwd_flag,conds,icon,wdire,pickup_borough,dropoff_borough],axis=1)
test_afterOnehot = pd.concat([test,Tweekday,Tmonth,Tweek,Tvendor_id,Tstore_and_fwd_flag,Tconds,Ticon,Twdire,Tpickup_borough,Tdropoff_borough],axis=1)

train_afterOnehot.info()

对连续型变量先进行Box-Cox变换,使其满足正态,然后进行最大最小值归一化处理。

#对特征进行Box-Cox变换,使其满足正态
after_BoxCox_train = train_data_scaler
after_BoxCox_test = test_data_scaler

from scipy import stats
for col in MinMaxNum:
    after_BoxCox_train[col],a = stats.boxcox(after_BoxCox_train[col] + 1)

for col in MinMaxNum:
    after_BoxCox_test[col],b = stats.boxcox(after_BoxCox_test[col] + 1)

# 最大最小值归一化
# 区间缩放,返回值为缩放到[0, 1]区间的数据
train_data_scaler = after_BoxCox_train
test_data_scaler = after_BoxCox_test

NotOneHot = [i for i in train_data_scaler.columns if i not in Onehot]

MinMaxNum = NotOneHot

MinMaxNum.remove('trip_duration')

for col in MinMaxNum:
        train_data_scaler[col] = (train_data_scaler[col] - train_data_scaler[col].min())/(train_data_scaler[col].max() - train_data_scaler[col].min()) 


for col in MinMaxNum:
        test_data_scaler[col] = (test_data_scaler[col] - test_data_scaler[col].min())/(test_data_scaler[col].max() - test_data_scaler[col].min()) 

合并训练集测试,并进行PCA降维。

#PCA降维

from sklearn.decomposition import PCA
np.set_printoptions(suppress=True)
column = []
pca_train = data_all.drop(['trip_duration','oringin'],axis=1)

for i in range(100):
    print("降到"+str(i+1)+"维")
    pca = PCA(n_components=(i+1))#降到i+1维
    pca.fit(pca_train)                  #训练
    newX=pca.fit_transform(pca_train)   #降维后的数据
    # PCA(copy=True, n_components=2, whiten=False)
    print(pca.explained_variance_ratio_)  #输出贡献率
    print("累积贡献率"+ str(sum(pca.explained_variance_ratio_)))
    print("--------------------------------------")

print("降到"+str(30)+"维")
pca = PCA(n_components=(30))#降到i+1维
pca.fit(pca_train)                  #训练
newX=pca.fit_transform(pca_train)   #降维后的数据
# PCA(copy=True, n_components=2, whiten=False)
print(pca.explained_variance_ratio_)  #输出贡献率
print("累积贡献率"+ str(sum(pca.explained_variance_ratio_)))
print("--------------------------------------")

观察发现,降到30维已经有0.907的累计贡献率。
保存降维后的数据。

new = pd.DataFrame(newX)
new.columns = ['pca1','pca2','pca3','pca4','pca5','pca6','pca7','pca8','pca9','pca10','pca11','pca12','pca13','pca14','pca15','pca16','pca17','pca18','pca19','pca20','pca21','pca22','pca23','pca24','pca25','pca26','pca27','pca28','pca29','pca30']
new = pd.concat([new,data_all['trip_duration'],data_all['oringin']],axis=1)


#根据列值拆分数据集,并将预测变量合并回去
index1 = new['oringin'] == "train"
index2 = new['oringin'] == "test"

train_all = new[index1]
test_all = new[index2]

train_all = train_all.drop('oringin',axis=1)
test_all = test_all.drop('oringin',axis=1)
train_all.to_csv(r"D:\A特征工程处理后训练集.txt", sep='\t', index=False) 
test_all.to_csv(r"D:\A特征工程处理后测试集.txt", sep='\t', index=False) 

至此特征工程阶段结束。

四、模型训练

导入库及所需数据集。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression  #线性回归
from sklearn.neighbors import KNeighborsRegressor  #K近邻回归
from sklearn.tree import DecisionTreeRegressor     #决策树回归
from sklearn.ensemble import RandomForestRegressor #随机森林回归
from sklearn.svm import SVR  #支持向量回归
import lightgbm as lgb #lightGbm模型

from sklearn.model_selection import train_test_split # 切分数据
from sklearn.metrics import mean_squared_error #评价指标

from sklearn.model_selection import learning_curve
from sklearn.model_selection import ShuffleSplit
from scipy import stats
from sklearn.ensemble import RandomForestClassifier 
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split,GridSearchCV,cross_val_score
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
from math import sqrt
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
import warnings
import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model
from sklearn.linear_model import Ridge  #岭回归

warnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
%matplotlib inline

pd.set_option('display.float_format', lambda x:'%.5f'%x) # 小数点后面保留5位小数,不以科学计数法显示
pd.set_option('display.max_columns', None)#显示全部列

from matplotlib import pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set()

train = pd.read_csv(r"D:\A特征工程处理后训练集.txt", sep='\t', encoding='utf-8')
test = pd.read_csv(r"D:\A特征工程处理后测试集.txt", sep='\t', encoding='utf-8')
test = test.drop('trip_duration',axis=1)

数据集划分,其中test_data用于测试,check_data用于调参。

X = ['pca1','pca2','pca3','pca4','pca5','pca6','pca7','pca8','pca9','pca10','pca11','pca12','pca13','pca14','pca15','pca16','pca17','pca18','pca19','pca20','pca21','pca22','pca23','pca24','pca25','pca26','pca27','pca28','pca29','pca30']
Y = ['trip_duration']
X_train = train[X]
Y_train = train[Y]
#划分测试集与训练集
train_data,test_data,train_target,test_target=train_test_split(X_train,Y_train,test_size=0.2,random_state=0)
#在测试集的基础上再划分验证集与测试集
check_data,test_data,check_target,test_target=train_test_split(test_data,test_target,test_size=0.5,random_state=0)

使用’岭回归’,‘lasso回归’,‘随机森林回归’,‘XGBOOST回归’,‘极端随机树回归’,'LightGBM回归’进行训练及测试。

#岭回归

clf = linear_model.RidgeCV(fit_intercept=False) 
# 训练模型
clf.fit(train_data, train_target)
print ('alpha的数值 : ', clf.alpha_)
print( '参数的数值:', clf.coef_)
alpha = clf.alpha_
Brige = Ridge(alpha = alpha , solver="cholesky")
Brige.fit(train_data, train_target)

pre_Brige = Brige.predict(test_data)

BrigesRMSE = sqrt(mean_squared_error(test_target, pre_Brige))
BrigesMAE = mean_absolute_error(test_target, pre_Brige)
BrigesR2 = r2_score(test_target, pre_Brige)


print('BrigesRMSE:' +str(BrigesRMSE))
print('BrigesMAE:' +str(BrigesMAE))
print('BrigesR2:' +str(BrigesR2))

from sklearn.linear_model import Lasso, LassoCV
# 构造不同的Lambda值
Lambdas = np.logspace(-5, 2, 200)
# LASSO回归模型的交叉验证
lasso_cv = LassoCV(alphas=Lambdas, normalize=True, cv=10, max_iter=10000)
lasso_cv.fit(train_data, train_target)
# 输出最佳的lambda值
lasso_best_alpha = lasso_cv.alpha_  # 0.06294988990221888

Lasso = Lasso(alpha = lasso_best_alpha )
Lasso.fit(train_data, train_target)

pre_Lasso = Lasso.predict(test_data)

LassoRMSE = sqrt(mean_squared_error(test_target, pre_Lasso))
LassoMAE = mean_absolute_error(test_target, pre_Lasso)
LassoR2 = r2_score(test_target, pre_Lasso)


print('LassoRMSE:' +str(LassoRMSE))
print('LassoMAE:' +str(LassoMAE))
print('LassoR2:' +str(LassoR2))

from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor(random_state = 66)

rf.fit(train_data,train_target)

pre_rf = rf.predict(test_data)

rfRMSE = sqrt(mean_squared_error(test_target, pre_rf))
rfMAE = mean_absolute_error(test_target, pre_rf)
rfR2 = r2_score(test_target, pre_rf)


print('rfRMSE:' +str(rfRMSE))
print('rfMAE:' +str(rfMAE))
print('rfR2:' +str(rfR2))

from xgboost import XGBRegressor

XGBR = XGBRegressor()
XGBR.fit(train_data,train_target)

pre_XGBR = XGBR.predict(test_data)

XGBRRMSE = sqrt(mean_squared_error(test_target, pre_XGBR))
XGBRMAE = mean_absolute_error(test_target, pre_XGBR)
XGBRR2 = r2_score(test_target, pre_XGBR)


print('XGBRRMSE:' +str(XGBRRMSE))
print('XGBRMAE:' +str(XGBRMAE))
print('XGBRR2:' +str(XGBRR2))
ETR = ExtraTreesRegressor()
ETR.fit(train_data,train_target)

pre_ETR = ETR.predict(test_data)

ETRRRMSE = sqrt(mean_squared_error(test_target, pre_ETR))
ETRRMAE = mean_absolute_error(test_target, pre_ETR)
ETRRR2 = r2_score(test_target, pre_ETR)


print('ETRRRMSE:' +str(ETRRRMSE))
print('ETRRMAE:' +str(ETRRMAE))
print('ETRRR2:' +str(ETRRR2))
lgb = lgb.LGBMRegressor()
lgb.fit(train_data,train_target)

pre_lgb = lgb.predict(test_data)

lgbRRMSE = sqrt(mean_squared_error(test_target, pre_lgb))
lgbRMAE = mean_absolute_error(test_target, pre_lgb)
lgbR2 = r2_score(test_target, pre_lgb)


print('lgbRRMSE:' +str(lgbRRMSE))
print('lgbRMAE:' +str(lgbRMAE))
print('lgbR2:' +str(lgbR2))

查看测试结果。

plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签

x_data = ['岭回归','lasso回归','随机森林回归','XGBOOST回归','极端随机树回归','LightGBM回归']
y_data = [BrigesRMSE,LassoRMSE,rfRMSE,XGBRRMSE,ETRRRMSE,lgbRRMSE]
plt.barh(y=x_data, width =y_data)
plt.show()

x_data = ['岭回归','lasso回归','随机森林回归','XGBOOST回归','极端随机树回归','LightGBM回归']
y_data = [BrigesMAE,LassoMAE,rfMAE,XGBRMAE,ETRRMAE,lgbRMAE]
plt.barh(y=x_data, width =y_data)
plt.show()

x_data = ['岭回归','lasso回归','随机森林回归','XGBOOST回归','极端随机树回归','LightGBM回归']
y_data = [BrigesR2,LassoR2,rfR2,XGBRR2,ETRRR2,lgbR2]
plt.barh(y=x_data, width =y_data)
plt.show()

在这里插入图片描述
在这里插入图片描述在这里插入图片描述
综合发现,xgboost模型的效果最优,然后使用学习曲线查看训练情况,结果表明没有存在拟合问题。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.datasets import load_digits
from sklearn.model_selection import learning_curve
from sklearn.model_selection import ShuffleSplit
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签


def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
                        n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)):
    plt.figure()
    plt.title(title)
    if ylim is not None:
        plt.ylim(*ylim)
    plt.xlabel("Training examples")
    plt.ylabel("Score")
    train_sizes, train_scores, test_scores = learning_curve(
        estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
    train_scores_mean = np.mean(train_scores, axis=1)
    train_scores_std = np.std(train_scores, axis=1)
    test_scores_mean = np.mean(test_scores, axis=1)
    test_scores_std = np.std(test_scores, axis=1)
    plt.grid()
 
    plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                     train_scores_mean + train_scores_std, alpha=0.1,
                     color="r")
    plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
                     test_scores_mean + test_scores_std, alpha=0.1, color="g")
    plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
             label="Training score")
    plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
             label="Cross-validation score")
 
    plt.legend(loc="best")
    return plt


# 图一
title = r"Learning Curves (XGBOOST回归)"
#cv = ShuffleSplit(n_splits=100, test_size=0.2, random_state=0)

estimator = XGBRegressor()  #建模
plot_learning_curve(estimator, title, X_train, Y_train, ylim=(0.10, 1.00), cv=3, n_jobs=1)
 
plt.show()

在这里插入图片描述
使用网格调参对XGBoost模型进行调参。
共两轮。

from sklearn.model_selection import train_test_split,GridSearchCV,cross_val_score
from xgboost import XGBRegressor

import time
start = time.time()

param_grid = {'n_estimators':[800,900,1000],
              'max_depth':[5,6,7],
              'learning_rate':[0.02,0.05,0.1],
             }
XGBR = XGBRegressor()

GS = GridSearchCV(XGBR,param_grid,cv=5)

GS.fit(check_data,check_target)

end = time.time()

print("循环运行时间:%.2f秒"%(end-start))

print(GS.best_params_)
print(GS.best_score_)

#循环运行时间:30169.42秒
#{'learning_rate': 0.05, 'max_depth': 7, 'n_estimators': 1000}
#0.6016442032512698

from sklearn.model_selection import train_test_split,GridSearchCV,cross_val_score
from xgboost import XGBRegressor

import time
start = time.time()

param_grid = {'n_estimators':[1000,1100,1200],
              'max_depth':[7,8,9],
              'learning_rate':[0.05],
             }
XGBR = XGBRegressor()

GS = GridSearchCV(XGBR,param_grid,cv=5)

GS.fit(check_data,check_target)

end = time.time()

print("循环运行时间:%.2f秒"%(end-start))

print(GS.best_params_)
print(GS.best_score_)

#循环运行时间:18565.73秒
#{'learning_rate': 0.05, 'max_depth': 7, 'n_estimators': 1000}
#0.6016442032512698

使用调好的参数训练模型并进行比对。

from xgboost import XGBRegressor

AXGBR = XGBRegressor(n_estimators=1000,max_depth=7,learning_rate=0.05)
AXGBR.fit(train_data,train_target)

Apre_XGBR = AXGBR.predict(test_data)

AXGBRRMSE = sqrt(mean_squared_error(test_target, Apre_XGBR))
AXGBRMAE = mean_absolute_error(test_target, Apre_XGBR)
AXGBRR2 = r2_score(test_target, Apre_XGBR)


print('XGBRRMSE:' +str(AXGBRRMSE))
print('XGBRMAE:' +str(AXGBRMAE))
print('XGBRR2:' +str(AXGBRR2))

plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签

x_data = ['XGBOOST回归调参前','XGBOOST回归调参后']
y_data = [XGBRRMSE,AXGBRRMSE]
plt.barh(y=x_data, width =y_data)
plt.show()
x_data = ['XGBOOST回归调参前','XGBOOST回归调参后']
y_data = [XGBRMAE,AXGBRMAE]
plt.barh(y=x_data, width =y_data)
plt.show()
x_data = ['XGBOOST回归调参前','XGBOOST回归调参后']
y_data = [XGBRR2,AXGBRR2]
plt.barh(y=x_data, width =y_data)
plt.show()

在这里插入图片描述在这里插入图片描述
在这里插入图片描述
最后再使用学习曲线查看是否存在拟合问题。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.datasets import load_digits
from sklearn.model_selection import learning_curve
from sklearn.model_selection import ShuffleSplit
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
from xgboost import XGBRegressor


def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
                        n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)):
    plt.figure()
    plt.title(title)
    if ylim is not None:
        plt.ylim(*ylim)
    plt.xlabel("Training examples")
    plt.ylabel("Score")
    train_sizes, train_scores, test_scores = learning_curve(
        estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
    train_scores_mean = np.mean(train_scores, axis=1)
    train_scores_std = np.std(train_scores, axis=1)
    test_scores_mean = np.mean(test_scores, axis=1)
    test_scores_std = np.std(test_scores, axis=1)
    plt.grid()
 
    plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                     train_scores_mean + train_scores_std, alpha=0.1,
                     color="r")
    plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
                     test_scores_mean + test_scores_std, alpha=0.1, color="g")
    plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
             label="Training score")
    plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
             label="Cross-validation score")
 
    plt.legend(loc="best")
    return plt


# 图一
title = r"Learning Curves (XGBOOST回归)"
#cv = ShuffleSplit(n_splits=100, test_size=0.2, random_state=0)

estimator = XGBRegressor(n_estimators=1000,max_depth=7,learning_rate=0.05)  #建模
plot_learning_curve(estimator, title, X_train, Y_train, ylim=(0.10, 1.00), cv=3, n_jobs=1)
 
plt.show()

在这里插入图片描述

五、参考

[1] kaggle.New York City Taxi Trip Duration.https://www.kaggle.com/competitions/nyc-taxi-trip-duration/data.(2022,4,6)
[2] MEINERTSEN.New York City Taxi Trip - Hourly Weather Data.https://www.kaggle.com/datasets/meinertsen/new-york-city-taxi-trip-hourly-weather-data.(2022,4,6)
[3] HAOZHENGNI.Gasoline Retail Price in New York City.https://www.kaggle.com/datasets/haozheng0512/gasoline-price-nyc.(2022,4,6)

  • 47
    点赞
  • 44
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值