joinquantdata
码龄6年
关注
提问 私信
  • 博客:94,580
    94,580
    总访问量
  • 11
    原创
  • 460,784
    排名
  • 105
    粉丝
  • 1
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2018-09-06
博客简介:

joinquantdata的博客

查看详细资料
个人成就
  • 获得33次点赞
  • 内容获得17次评论
  • 获得307次收藏
  • 代码片获得128次分享
创作历程
  • 17篇
    2019年
  • 7篇
    2018年
成就勋章
TA的专栏
  • 量化数据接口
    14篇
  • 股票量化
    8篇
  • 期货量化
    6篇
  • 可编程
    7篇
  • 免费
    7篇
  • 行情数据接口
    8篇
  • 数据本地化
    12篇
  • 量化交易
    14篇
  • 行业
    1篇
  • 估值
    1篇
  • 免费数据
    15篇
  • 数据本地
    5篇
  • jqdata
    12篇
  • VNPY
    3篇
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

JQData | 量化界最好用的本地量化金融数据(free & free~)

什么是本地量化金融数据 - JQData ?使用JQData本地量化金融数据服务,可快速查看、计算或接入金融数据信息,解决本地、web、自研金融终端调用数据的需求。支持python多版本及多操作系统。为财经类企业、金融机构、学术研究机构和量化爱好者们提供一站式财经信息服务及数据解决方案。现已服务于国内多家顶级券商的量化交易平台,历经1年多百亿级实盘交易量考验,完全具备商用数据的稳定性和准确性。...
转载
发布博客 2019.02.14 ·
2009 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

每日‘主力净额’排名与股价走势统计分析(JQData)

—— 本篇文章 by 易蠡贡每日‘主力净额’排名与股价走势统计分析(JQData)难得空闲,写篇笔记给大家分享,也是这段时间自己学习总结。初学量化,初学python,没有炒股经验,看到各种指标一脸茫然,也不知道这样的统计结果有没有实际意义。常看到大师们提及‘量在价先’,量和价到底时一个什么样的关系?打开股票软件,常常看到‘一柱擎天’的天量,有的说是利好消息,有的说是庄家操作,有的说是XX队...
转载
发布博客 2019.02.14 ·
3782 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

通过jqdata校验本地vnpy数据库中日线和分钟线数据的完整性

—— 本篇文章 by 丁智校验本地数据完整性通过jqdata校验本地vnpy数据库中交易数据的完整性登陆jqdataimport pandas as pdimport matplotlib.pyplot as pltimport numpy as npimport jqdatasdkimport talibtel = '12345678900'pwd = '123456'...
转载
发布博客 2019.02.14 ·
744 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

在个股回测中,如何才能避开新股的一字涨停?

—— 本篇文章 by tom王小昭大家在做回测的时候,通常需要过滤新股的一字涨停阶段,毕竟这个时间点是没办法买入的。话不多说,代码如下:def is_newstock_limit_up(code):"""是否是新股一字涨停股"""# 获取股票信息security = jqdatasdk.get_security_info(code)start_date = security.s...
转载
发布博客 2019.02.14 ·
749 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

基于聚宽数据JQData的沪深300股指期货贴水现象简析

—— 本篇文章 by solon沪深300股指期货是以沪深300指数作为标的,于2010年4月16日在中金所推出的一个股指期货品种。期货的基本功能就是为投资者提供套保风险对冲和现货市场的价格发现,而对于股指期货来说,其风险对冲功能主要体现在市场中性alpha策略的系统性风险的对冲上,一般是通过持有股票的投资组合多头,并做空股指期货,来对冲大盘的系统性风险以达到锁定alpha收益的目的,因此,...
转载
发布博客 2019.02.14 ·
1661 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Keras框架 深度学习模型CNN+LSTM+Attention机制 预测黄金主力收盘价

—— 本篇文章 by HeartBearting有问题欢迎与我交流。评论留言或者联系我的邮箱:jiaohaibin@ruc.edu.cn数据由JQData本地量化金融数据支持实验2:使⽤历史前5个时刻的 open close high low volume money预测当前时刻的收盘价,即 [None, 5, 6] => [None, 1] # None是 batch_s...
转载
发布博客 2019.02.14 ·
20037 阅读 ·
4 点赞 ·
5 评论 ·
113 收藏

安装jqdata时遇到第三方库无法升级的解决方法

—— 本篇文章 by 平心静气安装jqdata时遇到第三方库无法升级的解决方法在已经安装过许多第三方库的python环境中,使用pip install jqdatasdk安装jqdata时,需要升级第三方库,但是已经安装的第三方库无法卸载,报错类似如下Cannot uninstall ‘SQLAlchemy’. It is a distutils installed project an...
转载
发布博客 2019.02.14 ·
377 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

强化学习入门:基于Q-learning算法的日内择时策略初窥

—— 本篇文章 by 。大咖本篇文章所使用的数据,来源于JQData本地量化金融数据库。下面我将粗略的介绍一个强化学习在证券市场中应用的简单实例。关于强化学习的算法理论及发展历史,我们不做过多的解释。我们可以很容易在互联网上找到强化学习的理论知识,虽然可能都是一些只言片语,但对于初学者来说基本也就够用了。到目前为止,还没有出现广受业内好评的中文教材,更多的参考资料还是英文版的。例如,Ri...
转载
发布博客 2019.02.14 ·
2629 阅读 ·
3 点赞 ·
0 评论 ·
21 收藏

深度学习模型 CNN+LSTM 预测收盘价

—— 本篇文章 by HeartBearting上一篇浏览量很大,感谢各位的关注!能够在这里分享一些实验,一起领略 数据科学之美,也很开心。以后,这个实验的模型会不断深化。之后,也会分享一些 论文里 基于深度学习的时间序列预测模型。数据由JQData本地量化金融数据支持上一篇做了2个实验,预测黄金期货主力合约的收盘价。实验2:使⽤历史前5个时刻的 open close high...
转载
发布博客 2019.02.14 ·
16667 阅读 ·
16 点赞 ·
8 评论 ·
125 收藏

深度学习框架 Keras,深度学习LSTM模型

—— 本篇文章 by HeartBeating深度学习框架 Keras,深度学习LSTM模型1 数据源:黄金主力数据 来源于JQData (数据由JQData支持 )2 数据清洗3 使用黄金主力数据 进⾏预测的2个实验数据集:70%用做训练集 训练模型 ;30%测试集。模型:Keras框架, 用LSTM模型对收盘价进行预测循环神经⽹网络,RNN(Recurrent Neural ...
转载
发布博客 2019.02.14 ·
1905 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

在自定义的类里对jqdatasdk的api进行批量二次封装的方法

在自定义的类里对jqdatasdk的api进行批量二次封装的方法简介jqdatasdk是聚宽的一个模块,主要用于从本地获取聚宽的金融数据,方便在本地进行量化研究,或者对接本地使用的交易系统。如果要便捷的使用jqdatasdk的话,你可能会希望定义一个自定义的类,然后对jqdatasdk的API进行二次封装,从而实现较高自由度的调用,或者实现一些比较复杂的功能。这里介绍一下如何借鉴pytho...
转载
发布博客 2019.02.13 ·
185 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

量化学习:聚宽jqdatasdk对接vnpy的数据服务

—— 本篇文章 by 丁智数据服务:使用聚宽jqdatasdk获取分钟数据按vnpy的Bar格式导入至mongodb中提供downloadAllMinuteBar(),可以通过定时任务的形式,按vnpy的数据格式,每日获取分钟数据写入到mongodb当中提供downloadMinuteBarByDate,可以输入开始日期与结束日期,将时间段内的分钟数据写入到mongodb当中在...
转载
发布博客 2019.02.13 ·
987 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

vnpy通过jqdatasdk初始化实时数据

by 用户X功能描述vnpy在1.9.2版本当中,有通过rqdata进行初始化的部分,仿照此部分功能,完成了通过jqdatasdk初始化实时数据的功能。这样就可以解决在盘中开启策略,缺少当日盘中数据的问题。·VT_setting.jsonVT_setting.json中包含vnpy初始化所使用的配置信息。我们在这部分增加三个配置信息,data_server,jqUsername,jqPa...
原创
发布博客 2019.01.31 ·
3702 阅读 ·
0 点赞 ·
0 评论 ·
10 收藏

A股市场14年来行业特征和价值一窥 (深度好文)

写在前面:本文的历史价格,事件,时间等未必准确。本文的图表数据仅用于静安笔记个人研究。静安笔记不对您的任何投资行为负责。每篇文章即使大致正确也只能涵盖一个角度或领域,不代表符合您的投资利益。欢迎完整转载;单独使用本文图表数据请事先征得本人同意,并注明出处。继续使用聚宽数据JQData【1】,通过Python及其工具包编程对A股市场2005年来上市公司按行业进行汇总,勾勒出以下行业市值变动面积...
原创
发布博客 2019.01.29 ·
685 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

用数据说话:小议A股市场的整体投资价值【长且重要】 - JQData

写在前面:本文的历史价格,事件,时间等未必准确。本文的图表数据仅用于静安笔记个人研究。静安笔记不对您的任何投资行为负责。每篇文章即使大致正确也只能涵盖一个角度或领域,不代表符合您的投资利益。欢迎完整转载;单独使用本文图表数据请事先征得本人同意,并注明出处。2005年到如今,A股(不含B, H)市场经历了几次大起大落,上市公司也从1300多家增长到3500多家。市场分红总额也从2005年的8...
原创
发布博客 2019.01.29 ·
449 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

张裕B: 一个业余投资者的价值遗梦

写在前面:本文目的在于总结探讨普通投资者投资股票面对的风险,不确定性和可能的价值。绝不是推荐股票!投资不一定能赚钱,贴上“价值”二字并不一定改善赢率!(以及为什么投资股票指数基金是个好选择。)张裕是近几年唯一一家我曾经敢于推荐给家人同学的一只股票:这家公司业务相对简单,财报简单,寿命很长,张裕B股估值不算高。。。(当然看完全文您就理解:我以后再也不推荐股票了。买指数基金长期持有吧!)**...
原创
发布博客 2019.01.29 ·
1111 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

用数量化方法选择股票基金【JQdata - 初探】

静安笔记今年写了这么多投资指数基金的文章,都是干货。美中不足,至今我还没有买过股票基金,包括股票指数基金。(但是大家别慌,买指数基金长期持有是好的选择。静安笔记个人搞价值投资,股票已经套牢,没什么好说的。)那我们国家那么多各种股票型基金表现究竟如何呢?周末我用Python调用聚宽数据(JQData)【1】简单查阅了一下。首先排除2016年3月31日以后才成立的新基金。当然也不得不剔除一些数据...
转载
发布博客 2019.01.29 ·
915 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

JQData应用 | 基于估值波动周期的择时策略

一、前言在变化莫测的A股市场上,永远流传着三个终极问题:**我该买什么?什么时候买?什么时候卖?**多少人以为自己知道答案,直到股灾降临,灰飞烟灭。在经历了一轮又一轮牛市和熊市的洗礼后,我们终于透过估值数据发现了市场周期的秘密。这里我们分享一个总收益在100%以上、股灾期间回撤3%的择时策略,希望能对你回答上面的问题有所帮助。二、市场估值的周期性波动特征在说明这个策略之前,我们首先需要了解...
原创
发布博客 2018.11.20 ·
530 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

JQData应用 | A股行业投资指南——好的投资,首先是选好行业

一.好的投资,首先是选好行业红杉资本曾经有一条著名的投资经验,大意是:**好的投资,首先是选好赛道,其次是赛道上的选手。**对于每天活跃于资本市场上的投资者而言,赛道所指的正是你正在投资、或者将要投资的那家公司它所在的行业,更直接的说,你投资于什么行业,投资于这个行业的哪家公司,决定了你最终能获得什么样的收益表现。那么,红杉资本的这条投资经验是否适用于A股市场,并给我们带来可观的投资收益呢?本...
原创
发布博客 2018.11.20 ·
475 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

聚宽数据(JQData)本地化解决方案:基于MongoDB(下)

我们进一步对BaseModel进行封装,使其更适合数据分析人员,尤其是那些对非计算机专业的编程人员,因为他们希望看到的数据就是一张表,类似于Excel,而不是一堆字典或数组。我们再创建一个文件modeldata.py:import datetimeimport pandas as pdimport numpy as npfrom ..db import BaseModel#from ...
原创
发布博客 2018.11.20 ·
1309 阅读 ·
0 点赞 ·
1 评论 ·
5 收藏
加载更多