问题
问题的一般性描述:
设有 m 元钱,n 项投资,函数 fi(x) 表示将 x 元投入第 i 项项目所产生的效益,i=1,2,…,n.
问:如何分配这 m 元钱,使得投资的总效益最高?
组合优化问题,假设分配给第 i 个项目的钱数是 xi,问题描述为:
目标函数:max { f1(x1) + f2(x2)+ … + fn(xn)},
约束条件:x1 + x2 + … + xn = m , xi ∈ N.
解析
设 Fk (x)表示 x 万元投给前 k 个项目的最大效益,k=1,2,…,n,x=1,2,…,m
递
推
方
程
递推方程
递推方程:
F
k
(
x
)
=
m
a
x
0
≤
x
k
≤
x
{
f
k
(
x
k
)
+
F
k
−
1
}
,
k
=
2
,
3
,
.
.
.
,
n
F_k(x)=\mathop{max}\limits_{0\le x_k \le x}\left\{ f_k(x_k)+F_{k-1}\right\},k=2,3,...,n
Fk(x)=0≤xk≤xmax{fk(xk)+Fk−1},k=2,3,...,n
边
界
条
件
边界条件
边界条件:
F
k
(
x
)
=
f
1
(
x
)
,
F
k
(
0
)
,
k
−
1
,
2
,
.
.
.
,
n
F_k(x)=f_1(x),F_k(0),k-1,2,...,n
Fk(x)=f1(x),Fk(0),k−1,2,...,n
说明:第 k 步,前后共分配 x 万元,
- 分配给第 k 个项目为 xk
- x-xk 万元,分配给前 k-1 个项目
证明满足优化原则
优化原则:一个最优决策序列的任何子序列本身一定是相对于子序列的初始和结束状 态的最优决策序列。
已知:这个序列 L1 是最优决策序列
那么:这个序列任何子序列本身一定是相对于子序列的初始和结束状态的最优决策序列。
核心代码
int max(int F[X][Y],int f[X][Y],int mm,int money)
{
for (int i = 1; i <= mm; i++)
{
for (int j = 0; j <= money; j++)
{
F[i][j] = 0;
m[i][j] = 0;
for (int k = 0; k <= j; k++)
{
if (F[i][j] < f[i][k] + F[i - 1][j - k]){
F[i][j] = f[i][k] + F[i - 1][j - k];
m[i][j]=k;}
}
}
}
return F[mm][money];
}
分析
时间复杂度 : w ( n , m ) = O ( n m 2 ) w(n,m) = O(nm^2) w(n,m)=O(nm2)