书架问题(动归)

这是一篇关于使用动态规划解决书架摆放问题的文章。文章介绍了如何将书按照顺序放置到宽度有限的书架上,以求得书架整体最小高度。作者详细解释了动态规划的思路,给出了状态转移方程:dp[i]=max{dp[i−1]+books[i][1],max{max{books[j][1]...books[i][1]},dp[j]}},并提供了代码实现。" 89278619,7383142,探索回文串:最长回文子串模板解析,"['算法', '字符串处理', '编程挑战']
摘要由CSDN通过智能技术生成

题目:你把要摆放的书 books 都整理好,叠成一摞:从上往下,第 i 本书的厚度为 books[i][0],高度为books[i][1]

按顺序 将这些书摆放到总宽度为 shelf_width的书架上。

先选几本书放在书架上(它们的厚度之和小于等于书架的宽度 shelf_widt),然后再建一层书架。重复这个过程,直到把所有的书都放在书架上。

需要注意的是,在上述过程的每个步骤中,摆放书的顺序与你整理好的顺序相同。 例如,如果这里有 5 本书,那么可能的一种摆放情况是:第一和第二本书放在第一层书架上,第三本书放在第二层书架上,第四和第五本书放在最后一层书架上。

每一层所摆放的书的最大高度就是这一层书架的层高,书架整体的高度为各层高之和。

以这种方式布置书架,返回书架整体可能的最小高度

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/filling-bookcase-shelves

思路:

简单的动态规划问题,当我们加入一本新书的时候,会有两种情况

  • 将新的一本书创建为一层新的
  • 跟前面几本在同已层

那么,我们假设当前加入的为i本,dp[i]为前i放入书架的最矮高度,因此推出公式为:
d p [ i ] = m a x { d p [ i − 1 ] + b o o k s [ i ] [ 1 ] , m a x { m a x { b o o k s [ j ] [ 1 ] . . . b o

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值