Min25筛应用

前言

两年前写了一篇《Min25筛入门》,但其实我自己一直没有领悟到这个算法的精髓,发现之前写的很多东西也有点片面肤浅,只停留在知其然的地步。现在来补充一些筛积性函数前缀和之外的基础应用。
参考文章:https://www.cnblogs.com/GuessYCB/p/10061411.html

内容

R ( x ) R(x) R(x)为x的最小质因子。

  1. ∑ i ∈ [ 2 , n ] R ( i ) × [ i 是 合 数 ] \sum_{i\in[2,n]}R(i)\times[i是合数] i[2,n]R(i)×[i]
    虽然这不是经典积性函数求和,但是用Min25筛(模拟埃氏筛)的思想可以快速统计:
    考虑min25筛的part1,每次枚举一个质数将其不包含自身的倍数全部“筛去”。
    那么用质数p筛 g ( n ) g(n) g(n)时,可以求得被筛出数的个数,也就是 ( g ( n p ) − c n t [ p ] ) (g(\frac n p)-cnt[p]) (g(pn)cnt[p])。写个转移式在旁边便于理解:
    g ′ ( n ) = g ( n ) − ( g ( n p ) − c n t [ p ] ) , 其 中 c n t [ p ] 为 [ 1 , p ) 的 质 数 个 数 g'(n)=g(n)-(g(\frac n p)-cnt[p]),其中cnt[p]为[1,p)的质数个数 g(n)=g(n)(g(pn)cnt[p])cnt[p][1,p)
    注意这里面没有质数的贡献。如果需要的话还做一个质数的求和。

  2. ∑ i ∈ [ 2 , n ] R ( i ) × i × [ i 是 合 数 ] \sum_{i\in[2,n]}R(i)\times i \times[i是合数] i[2,n]R(i)×i×[i]
    稍微升级了一下,本质是一样的,只需要Part1,做求和就行。
    然后用质数p筛的时候,对答案贡献是 p 2 × ( g ( n / p ) − s u m [ p ] ) p^2\times(g(n/p)-sum[p]) p2×(g(n/p)sum[p])
    ∑ i ∈ [ 2 , n ] i R ( i ) × [ i 是 合 数 ] \sum_{i\in[2,n]}\frac i{R(i)} \times[i是合数] i[2,n]R(i)i×[i]也是类似的,贡献去掉 p 2 p^2 p2即可。

  3. ∑ i ∈ [ 2 , n ] D ( i ) , D ( i ) 是 i 的 最 大 质 因 子 \sum_{i\in[2,n]}D(i),D(i)是i的最大质因子 i[2,n]D(i)D(i)i
    这回不能沿用最小质因子的套路了。我们利用一下Part2的统计方法。
    每一次是枚举一个质因子。最后枚举的是最大的质因子。于是我们在所有质数和他的次幂那里算上贡献就可以了。
    写的比较丑可能常数不太好,多筛了一个不需要的个数。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N=2e5+10;
ll n,p[N],is[N],P,iden[N],iden2[N],w[N];
ll pcnt[N],g[N],s[N],psum[N];
ll id(ll x) {return ((x)<=P?iden[x]:iden2[n/(x)]);}
void init(){
	n=1.1e5;
	for(ll i=2;i<=n;i++){
		if(!is[i])p[++p[0]]=i;
		for(ll j=1;j<=p[0]&&p[j]*i<=n;j++){
			is[p[j]*i]=1;
			if(i%p[j]==0)break;
		}
		pcnt[i]=pcnt[i-1]+(is[i]==0);
		psum[i]=psum[i-1]+(is[i]==0)*i;
	}
}
ll m;
ll ask(ll x, ll mi){
	if (x==1||p[mi]>x)return 0;
	ll ret=s[id(x)]-psum[p[mi]-1];
	for(ll i=mi;i<=p[0]&&p[i]*p[i]<=x;i++){
		for(ll j=1,r=p[i];r<=x;j++,r*=p[i]){
			ret += ask(x/r,i+1) + (j>1?p[i]:0);
		}
	}
	return ret;
}

int main() {
	freopen("c.in","r",stdin);
	init();
	cin>>n;	P=sqrt(n);
	for(ll l=1;l<=n;l++){
		ll v=n/l;
		++m;
		if(v<=P)iden[v]=m;else iden2[n/v]=m;//想想为什么这个地方是单射
		w[m]=v;
		g[m]=v-1;
		s[m]=(2+v)*(v-1)/2;
		l=n/(n/l);
	}
	for(ll j=1;p[j]<=P;j++){
		for(ll i=1;i<=m&&p[j]*p[j]<=w[i];i++){
			g[i]-=g[id(w[i]/p[j])]-pcnt[p[j]-1];
			s[i]-=(s[id(w[i]/p[j])]-psum[p[j]-1])*p[j];
		}
	}
	cout<<ask(n,1)<<endl;
}
  1. ∑ i ∈ [ 2 , n ] D ( i ) , D ( i ) 是 i 的 严 格 次 大 质 因 子 , 如 果 不 存 在 即 为 0 \sum_{i\in[2,n]}D(i),D(i)是i的严格次大质因子,如果不存在即为0 i[2,n]D(i)D(i)i0
    类似(3).当你确定最大质因子的时候,你发现你是知道次大质因子是什么的。
    非严格次大也是可以类似做的,加一点点细节。

  2. ∑ i ∈ [ 2 , n ] D ( i ) × [ i 是 合 数 ] , D ( i ) 是 i 的 非 严 格 第 三 大 质 因 子 \sum_{i\in[2,n]}D(i)\times[i是合数],D(i)是i的非严格第三大质因子 i[2,n]D(i)×[i]D(i)i
    出这个就是丧心病狂了。还是改part2的ask函数,返回一个三元组:分别是用了1,2个质因子的数的个数,以及>=3个质因子的数的贡献和。统计这个也是O(1)的。

  3. 做到这里,你基本已经理解part2的直接计算法是在干啥了:其实就是在枚举每一个合数,以及快速计算质数的贡献。这也是需要part1的原因。
    那么,我们就可以轻易地对质因数做一些自定义的限制。比如 给 定 k , ∑ i ∈ [ 2 , n ] μ ( i ) [ g c d ( i , k ) = 1 ] 给定k,\sum_{i\in[2,n]}\mu(i)[gcd(i,k)=1] ki[2,n]μ(i)[gcd(i,k)=1]
    这是禁用了一些质因数的意思。

结语

虽然min25筛的基本盘还是积性函数的快速筛法,但是关于质因数的许多问题也能很好的处理。适用性比需要构造狄利克雷卷积的杜教筛更广(但是更慢)。其巧妙而又不复杂的思想是很值得我们去揣摩与掌握的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值