原名Fenwick Tree/Binary Index Tree
存在的必要
最好不要以线段树的区间思维来理解树状数组,树状数组的前提是满足区间减法,即求的是所谓的“前缀和”(其实都是[1,x]的区间)
树状数组能做的,线段树都能做,而且学上来线段树比他简单许多
但树状数组的时空复杂度相对于线段树都优了许多,看下面这张对比图
一个显然的结论 节点数从2n减少至n, 这样一来,虽然说其操作复杂度与线段树同为log n,但常数却差别很大,大数据通常都是上百ms的差距 而且树状数组10行能解决的事情,线段树要30行
线段树的常数究竟大在哪里呢?
点多 (废话)
基于二分实现访问(虽然是Log),速度较慢
基本结构
第一层是原序列,第二层开始是树状数组的叶子节点
先看看从这个图中能发现什么
1.最大的差别是,节点fi直接存了自己的ai, 这也是他减少冗余的原因之一吧
2.fi父亲节点都不超过i*2
3.奇数fi都在第一层,这个又有什么含义呢?
点3是最重要的
奇偶要从二进制说起
当二进制第一位为1时,那么该数为奇数,反之为偶数
那我们将注意力转到二进制上
发现没有 他所在的层数是由他结尾0决定的
我觉得,这就是树状数组的核心思想,用结尾0决定位置,做到O(1)询问其父节点与区间相邻的点
而且2的结尾0个数次方就是其向前包含的数的个数,这是一个很常用的性质
写成数学形式就是
l=i的结尾0个数
不难发现,
2l
其实i是只保留从低位到高位第一个1后的值,即所谓的lowbit()
即
2l
=lowbit(x)=x and (-x)
在计算机中负数存的是他的补码,所以这样能保留低位1 这个自己bing一下
操作
最基本的三种操作: 建树,修改与查询
简单解释一下原理
其实建树就是修改 , 所以并为讨论
Change&Build
假设现在维护sum,我们修改节点ai的值(其实就等价于减少或增加)
结合一下前面的图,不难发现只对
Fi
和他的父亲节点有影响
设他影响的点为
Fp1,Fp2,Fp3....Fpk
保证
0<p1<...<pn
显然
p1=i
,然后我们观察一下子节点son与父节点fa的二进制,其实满足这样一组关系 :
设fa与son为其对应的二进制,记Li为二进制i结尾的0个数
我们根据性质已知
Lson+1=Lfa
根据其思想,son的父亲节点就是求最小(在树状数组中son的位置之后的最近的fa)的fa使得
Lson+1=Lfa
那我们就让他加一个0,如何加0呢? 不就是加上lowbit让他进位吗?
数学形式即为
这样我们就实现了O(1)求父亲节点,然后就像这样迭代上去就完成了修改操作
void change(int loc , int v) {
while(loc <= n) {
f[loc] += v;
loc += Lowbit(loc);
}
}
相比线段树果然短了许多吧?
查询
假如我们要求l~r的和,我们为了方便分开求1~l-1与1~r
也就是现在要求
∑a1..i
上面说了如何O(1)找父节点,这里说如何O(1)找对于区间相邻的节点
现在回头看看前面的性质
而且2的结尾0个数次方就是其向前包含的数的个数,这是一个很常用的性质
这个性质为我们求相邻节点提供了方法
我们将当前数x加入结果,然后向后找第一个他未包含的数,即
x−Lowbit(x)
,重复上述步骤
这样求出来所有i=>i’都是相邻的,而且相加得所求区间整体
int sum(int i) {
int sum = 0;
while(i > 0) {
sum += f[i];
i -= Lowbit(i);
}
return sum;
}
样例代码
#include <iostream>
using namespace std;
int ft[100010],a[100010];
int n,m;
int lowbit(int x) {
return x&-x;
}
void change(int loc,int value) {
while (loc<=n) {
ft[loc]+=value;
loc+=lowbit(loc);
}
}
int sum(int x) {
int rs=0;
while (x>0) {
rs+=ft[x];
x-=lowbit(x);
}
return rs;
}
int query(int l,int r) {
return sum(r)-sum(l-1);
}
int main() {
freopen("bit.in","r",stdin);
cin>>n;
for (int i=1; i<=n; i++) {
scanf("%d\n",&a[i]);
change(i,a[i]);
}
cin>>m;
scanf("\n");
char ch;
int a2,b;
for (int i=0; i<m; i++) {
ch = getchar();
scanf("%d %d\n",&a2,&b);
if (ch=='Q') {
printf("%d\n",query(a2,b));
} else {
change(a2,b-a[a2]);
a[a2]=b;
}
}
}
树状数组区间修改
用单点修改与数学方法扩展出来的区间修改,功能只有类似区间加减这种的。
首先我们有原序列A,然后我们将该序列差分为序列D,d[i]=a[i]-a[i-1]。
(当然你也可以理解为sum[i]..sum[n]的”共同增量”)
那么
a[i]=∑ij=1d[j]
那么
∑a[i]=∑∑ij=1d[j]
拆分一下,
∑ki=1a[i]
=∑ij=1d[j]∗(k−j+1)
=∑ij=1(k+1)∗d[j]−d[j]∗j
多维护d[j]*j即可.
相当于我们现在要维护两颗树状数组。
那么我们每一次修改区间[l,r],只需要修改点l与点r的相关值就可以了。