题意
给定n+1(n<=6e3且n为偶数)个大小为n的集合,集合里的数都在[1,2n]内。
请求出任意一对交集大小大于n/2的集合。
分析
毛都没看出来,所以就打了50分的bitset.
我们考虑一下他交集大小的期望,也就是任意两对交集大小的平均数。
设有元素i的集合有ci个,任意一对ci都有1的贡献。
E=∑C(ci,2)C(n+1,2)
考虑ci如何取值能够最小化E。倘若Emin>=n/2则必定有解。
C(ci,2)可以近似的看为ci^2。又因为
∑ci=n(n+1)
,也就是ci的和给定。
要使
∑ci2
最小,应平均分ci.
因为
(a+k)2+(a−k)2=2a2+2k2>=2a2
,
所以
ci=n+12
.代入算一下就可以得出
Emin=n2
.
因此必定有解,又因为最小期望跟所求一定,所以可以大胆猜测有很多解。事实上解的级别是O(n)的。我们估计一下,先不管其他规则,无解时
E<=n2−1
,那么要想使得E>=n/2,则至少需要补
n/2−(n/2−1)1/n约等于n
个交满的解。因此解的级别可以估计成O(n)的。