机器学习系列01——机器学习需要这些数学知识

机器学习系列01——机器学习需要这些数学知识

1、前言

       放假在家想写写机器学习系列的文章,除夕前先来开个头,后面会一直写下去,搞机器学习算法也有一年多了,体会多少还是有一些的,这里记录在博客中,一来为自己后面的面试做点储备,二来是为了分享,因为很多都是从大家的博客中去学习的,所以这里也要将我理解的新的内容反馈出来,大家一起学习进步。

2、机器学习中涉及到的数学知识

       数学在计算机中的重要性不言而喻,这里也不多说了,先在这里罗列一下机器学习中涉及到的数学知识,以供大家自己能有思路有方法的学习机器学习相关的知识:

高等数学

常见函数求导

导数运算法则

复合函数求导

方向导数与梯度(难点)

凸集与凸函数

一元函数求极值

多元函数求极值(了解)

拉格朗日乘子法

泰勒公式展开

空间解析几何和向量代数

线性代数

 

矩阵的定义,矩阵的转置

单位矩阵,三角矩阵,对称矩阵

向量内积,相关性

正交向量组,标准正交基,正交矩阵

特征值分解

概率论

事件的关系与运算

条件概率,全概率公式,贝叶斯公式

随机变量的期望,方差

协方差,相关系数,协方差矩阵

概率分布:0-1分布,二项分布,高斯分布

极大似然函数估计

大数定律,伯努利大数定律,中心极限定理

对于上面的相关的内容大多数都已经总结了文档,放在自己的群文件共享中,后面在写机器学习算法的时候,会提到相关的数学内容,如果大家需要就留下QQ邮箱,看到我会发给大家的。

阅读更多
换一批

没有更多推荐了,返回首页