企业决策进入“自动驾驶“时代,JVS规则引擎10大核心节点如何重构决策链路?

从金融风控到精准营销,从供应链优化到智能制造,企业决策的复杂度一直在持续增长。JVS规则引擎的决策引擎是一种用于辅助或自动化决策过程功能,它可以通过结合数据、规则和分析模型,帮助人们更好地理解决策的顺序和影响因素,并提供一种可视化的方式来识别潜在的决策路径和可能的结果。

决策流是一个图形化的模型,是规则最终实现可执行的最后形态表现,可以显示出一系列决策和相关的条件、选项以及可能的结果。决策流由一系列节点和箭头组成,每个节点代表一个决策点,箭头表示不同决策结果之间的转移路径。如下图:

在实际应用中,决策流可以用于多个领域,例如业务流程管理、项目管理、风险分析等。

决策流是决策流配置在JVS规则引擎中是最核心的部分,通过构建可视化、可配置的决策网络,可以实现:

  • 动态编排能力:支持规则节点、评分模型、决策表等组件的自由组合,业务人员可通过拖拽式操作快速构建决策流程。
  • 实时响应机制:毫秒级决策反馈,适配高并发业务场景,如证券交易、实时风控等。
  • 全生命周期管理:提供版本控制、影响分析、模拟沙盒等配套功能,确保决策逻辑的可追溯性与可验证性。
  • 多维度可解释性:决策轨迹追踪、影响因子可视化、审计日志。

决策流将复杂决策过程解构为:输入层 → 预处理层 → 决策网络层 → 后处理层 → 输出层,每个层级都可以配置多个并行/串行节点,形成自适应的决策拓扑结构。

接下来我把JVS规则引擎决策引擎各个节点做个详细的说明介绍。

1、决策流节点

核心意义:

  • 快速引用:将其他复杂的决策流,通过直接选择即可引用到配置的决策中
  • 可视化编排:通过图形化的配置,直观地设计查看配置详情,降低技术门槛,方便非技术人员参与规则设计
  • 灵活控制结果:支持输出结果、不同传参方式、不同决策引用,适应多变的业务场景

2、赋值节点

主要作用

  • 变量转换:日期格式标准化、单位换算、编码映射
  • 特征衍生:生成交易频次、最近登录间隔等派生特征
  • 上下文管理:维护决策过程中的临时状态变量

常见场景

  • 在反欺诈场景中,将设备指纹信息转换为风险等级标签
  • 在个性化推荐中,构建用户近30天行为画像特征集
  • 支持表达式引擎实现复杂计算(如:sqrt(a² + b²) * sin(θ))

3、评分卡节点

技术架构

  • 支持A卡(申请评分)、B卡(行为评分)、C卡(催收评分)全流程建模
  • 集成WOE编码、IV值筛选、分箱优化等自动化建模工具
  • 提供Gini系数、KS值、ROC曲线等模型评估指标

常见场景:

  • 支持拒绝推断技术,有效解决样本选择偏倚问题
  • 配备模型版本对比功能,直观展示模型迭代效果

4、决策表节点

主要作用

  • 三维决策表:支持条件-动作-优先级的三维映射
  • 冲突解决策略:优先匹配、最近修改优先等6种策略
  • 批量导入导出:兼容Excel/CSV格式的规则模板,支持历史规则迁移

常见场景

  • 保险核保:根据被保人年龄、保额、健康状况等维度确定核保结论
  • 物流调度:基于货物类型、目的地、时效要求生成最优配送方案
  • 医疗诊断:整合症状、检查指标、病史数据辅助初步诊断

5、决策树节点

技术特点

  • 支持C4.5、CART、随机森林等多种算法生成的决策树。
  • 节点合并:自动识别可合并的相似分支,优化决策效率。
  • 剪枝策略:通过预剪枝/后剪枝控制模型复杂度,防止过拟合。

业务价值

  • 客户分群:基于RFM模型构建客户价值分层体系
  • 故障诊断:通过树状逻辑定位设备故障根源
  • 动态定价:根据市场供需、库存水平、竞品价格生成定价策略

性能优势

  • 可解释性强:决策路径清晰可见,符合金融监管要求
  • 计算效率高:支持百万级数据量的实时决策

6、交叉决策表

创新设计

  • 四维决策矩阵:条件1×条件2×动作×优先级
  • 智能补全:基于历史数据推荐缺失规则
  • 异常检测:自动标记覆盖率低于阈值的规则区域

常见场景

  • 某运营商通过交叉决策表实现套餐推荐,使ARPU值直线提升
  • 支持模糊匹配,解决"条件接近但未完全匹配"的业务痛点
  • 配备热度图分析功能,直观展示高频决策区域

节点优势

  • 支持模糊匹配:解决“条件接近但未完全匹配”的业务痛点。
  • 热度图分析:直观展示高频决策区域,优化规则配置。

7、复杂评分卡

技术特点

  • 集成机器学习模型(支持XGBoost、LightGBM等)
  • 特征重要性分析:通过SHAP值可视化解释模型预测结果
  • 模型解释性:生成自然语言解释报告,满足合规要求

常见场景

  • 反洗钱监测:构建时序特征+网络特征的复合评分模型
  • 智能投顾:基于市场数据、用户画像、宏观经济指标生成投资评分
  • 医疗影像分析:结合DICOM数据与临床指标构建预后评分

节点优势

  • 自动调参:通过贝叶斯优化搜索最优超参数组合。
  • 模型监控:实时跟踪模型性能漂移,触发预警机制。

8、规则集节点

核心功能

  • 支持IF-THEN-ELSE逻辑表达式,嵌套规则集管理(最大支持5层嵌套)。
  • 动态阈值配置:支持数据驱动调整规则阈值。
  • 规则热更新:运行时动态修改规则逻辑,无需重启服务。

常见场景

  • 电商促销:当用户等级>VIP3且近30天消费额≥5000元,触发专属优惠券。
  • 信贷审批:申请人征信评分<60分时,直接进入人工复核流程。
  • 设备预警:传感器数值超过安全阈值±15%时触发警报。

技术亮点

  • 冲突检测:自动识别规则间的包含、交叉关系。
  • 性能优化:通过规则索引技术提升执行效率,降低延迟。

9、多元计算节点

核心能力

  • 变量转换:支持日期格式标准化、单位换算、编码映射等操作。
  • 特征衍生:生成交易频次、最近登录间隔等派生特征。
  • 上下文管理:维护决策过程中的临时状态变量,支持跨节点数据传递。

常见场景

  • 在反欺诈场景中,将设备指纹信息转换为风险等级标签。
  • 在个性化推荐中,构建用户近30天行为画像特征集。
  • 支持表达式引擎实现复杂计算(如:sqrt(a² + b²) * sin(θ))。

10、条件分支节点

核心价值

  • 支持多分支逻辑:根据条件判断结果选择不同执行路径。
  • 循环控制:实现迭代计算或重复执行特定节点。
  • 异常处理:捕获决策流执行过程中的异常,触发回滚或补偿操作。

常见场景

  • 审批流程:根据审批结果自动进入下一环节或终止流程。
  • 数据校验:对输入数据进行多轮校验,确保数据质量。
  • 动态问卷:根据用户回答动态调整后续问题。

在线demo:http://rules.bctools.cn

gitee:https://gitee.com/software-minister/jvs-rules

管理后台HTML页面是Web开发中一种常见的实践,主要用于构建企业或组织内部的管理界面,具备数据监控、用户管理、内容编辑等功能。本文将探讨一套美观易用的二级菜单目录设计,帮助开发者创建高效且直观的后台管理系统。 HTML5:作为超文本标记语言的最新版本,HTML5增强了网页的互动性和可访问性,提供了更多语义元素,如<header>、<nav>、<section>、<article>等,有助于清晰地定义网页结构。在管理后台中,HTML5可用于构建页面布局,划分功能区域,并集成多媒体内容,如图像、音频和视频。 界面设计:良好的管理后台界面应具备清晰的导航、一致的布局和易于理解的图标。二级菜单目录设计能够有效组织信息,主菜单涵盖大类功能,次级菜单则提供更具体的操作选项,通过展开和折叠实现层次感,降低用户认知负担。 CSS:CSS是用于控制网页外观和布局的语言,可对HTML元素进行样式设置,包括颜色、字体、布局等。在管理后台中,CSS能够实现响应式设计,使页面在不同设备上具有良好的显示效果。借助CSS预处理器(如Sass或Less),可以编写更高效、模块化的样式代码,便于维护。 文件结构: guanli.html:可能是管理页面的主入口,包含后台的主要功能和布局。 xitong.html:可能是系统设置或配置页面,用于管理员调整系统参数。 denglu.html:登录页面,通常包含用户名和密码输入框、登录按钮,以及注册或忘记密码的链接。 image文件夹:存放页面使用的图片资源,如图标、背景图等。 css文件夹:包含后台系统的样式文件,如全局样式表style.css或按模块划分的样式文件。 响应式设计:在移动设备普及的背景下,管理后台需要支持多种屏幕尺寸。通过媒体查询(Media Queries)和式布局(Fluid Grids),可以确保后台在桌面、平板和手机上都能良好展示。
双闭环直电机调速系统是一种高效且应用广泛的直调速技术。通过设置转速环和电环两个闭环,系统能够对电机的转速和电进行精准控制,从而提升动态响应能力和稳定性,广泛应用于工业自动化领域。 主电路设计:主电路采用三相全控桥整电路,将交电转换为可调节的直电,为电机供电。晶闸管作为核心元件,通过调节控制角α实现输出电压的调节。 元部件设计:包括整变压器、晶闸管、电抗器等元件的设计与参数计算,这些元件的性能直接影响系统的稳定性和效率。 保护电路:设计过载保护、短路保护等保护电路,确保系统安全运行。 驱动电路:设计触发电路和脉冲变压器,触发电路用于触发晶闸管导通,脉冲变压器用于传递触发信号。 控制器设计:系统核心为转速调节器(ASR)和电调节器(ACR),分别对转速和电进行调控。检测电路用于采集实际转速和电值并反馈给调节器。 仿真分析:利用MATLAB/SIMULINK等工具对系统进行仿真分析,验证其稳定性和性能指标是否达标。 方案确定与框图绘制:明确系统构成及各模块连接方式。 主电路设计:选择整电路形式,设计整变压器、晶闸管等元部件并计算参数。 驱动电路设计:设计触发电路和脉冲变压器,确保晶闸管准确触发。 控制器设计: 转速调节器(ASR):根据转速指令调整实际转速。 电调节器(ACR):根据ASR输出指令调整电,实现快速响应。 参数计算:计算给定电压、调节器、检测电路、触发电路和稳压电路的参数。 仿真分析:通过软件模拟系统运行状态,评估性能。 电气原理图绘制:完成调速控制电路的电气原理图绘制。 双闭环控制策略:转速环在外,电环在内,形成嵌套结构,提升动态响应能力。 晶闸管控制角调节:通过改变控制角α调节输出电压,实现转速平滑调节。 仿真分析:借助专业软件验证设计的合理性和有效性。 双闭环直电机调速系统设计涉及主电路、驱动电路和控制器设计等多个环节,通过仿
电池管理系统(Battery Management System,简称BMS)是电动汽车及储能系统的关键部件,主要负责监控、保护、控制和优化电池组性能。本文重点探讨基于Simulink构建的BMS模型。Simulink是Matlab环境下一款强大的数学建模工具,广泛应用于工程仿真与控制设计,其可视化平台让复杂系统如电池BMS的设计和测试更加直观。 电池均衡是BMS的核心功能之一,旨在确保电池组中各单体电池电压和容量一致,避免因个别电池过充或过放影响系统性能。在Simulink模型中,电池均衡可通过电注入或能量转移实现,涉及电控制电路和算法的建模,例如电阻分压、电感平衡或开关电容等方法。 SOC计算(State of Charge,即电池荷电状态)也是BMS的重要功能,它是评估电池剩余能量的关键指标。在BMS模型中,SOC估算通常基于电池的电压、电、温度数据以及特定电池模型,如阶跃响应模型、等效电路模型或基于物理的模型。这些模型能够精准跟踪电池状态,为充电策略和故障检测提供依据。 在相关文件中,“license.txt”可能包含Simulink模型的使用许可信息,这对于模型的商业应用和合规性至关重要。“batteryBalancing”文件可能是电池均衡模块的具体实现,详细描述了Simulink构建的均衡算法,包括均衡触发条件、控制逻辑及电路模型等。 一个完整的BMS Simulink模型还应涵盖电池健康状态(SOH,State of Health)估计、热管理、安全保护(如过压、欠压、过保护等)以及通信接口(用于与车辆其他系统交互)等功能模块。这些模块需要精心设计和参数校准,以确保BMS在各种工况下保持稳定性和准确性。 在开发BMS模型时,用户可以借助Matlab的Simulink库,如控制库、信号处理库和电力电子库,并结合电池特性的实验数据进行模型搭建和仿真验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jonyleek

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值