傅里叶变换(Part I)

本系列主要介绍傅里叶变换和离散傅里叶变换的概念及理解,文本为该系列第一篇

背景

  • 任何周期函数都可以表示成不同频率的正弦函数/余弦函数的加权之和(傅里叶级数)
  • 非周期函数可以表示成不同频率的正弦函数/余弦函数加权之后的积分(傅里叶变换)
  • 欧拉公式: e j θ = c o s θ + j s i n θ e^{j\theta} = cos\theta + jsin\theta ejθ=cosθ+jsinθ

傅里叶级数

如同背景中介绍,具有周期 T T T的连续变量 t t t的周期函数 f ( t ) f(t) f(t)可以被描述为乘以适当系数的正弦余弦和,这个和就是傅里叶级数(相当于处理连续时间的周期性信号)

(对于为什么可以表示成不同频率的正弦余弦函数的加权和,可以简单的这样理解,如果原函数是周期为 T T T,那么以 c o s 2 π n T cos\frac{2\pi n}{T} cosT2πn为例,其最小周期为 T n \frac{T}{n} nT,所以T也是它的周期,所以对于 n n n的不同的整数取值,不同权重的 c o s 2 π n T cos\frac{2\pi n}{T} cosT2πn s i n 2 π n T sin\frac{2\pi n}{T} sinT2πn的加和都满足最后的函数也是周期也 T T T的,而前面的权重负责调整每个点上的大小,转换在频域内看就是每个频率的幅值)

f ( t ) = Σ n = − ∞ ∞ c n e j 2 π n T t = Σ n = − ∞ ∞ c n ( c o s 2 π n T t + j s i n 2 π n T t ) f(t) = \Sigma_{n=-\infty}^{\infty}c_ne^{j\frac{2\pi n}{T}t}=\Sigma_{n=-\infty}^{\infty}c_n(cos{\frac{2\pi n}{T}t}+jsin{\frac{2\pi n}{T}t}) f(t)=Σn=cnejT2πnt=Σn=cn(cosT2πnt+jsinT2πnt)
傅里叶系数 c n = 1 T ∫ − T 2 T 2 f ( t ) e − j 2 π n T t d t c_n = \frac{1}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(t)e^{-j\frac{2\pi n}{T}t}dt cn=T12T2Tf(t)ejT2πntdt
(傅里叶系数可以看成是函数向量 f ( t ) f(t) f(t)与不同基 e j 2 π n T t e^{j{\frac{2\pi n}{T}t}} ejT2πnt的内积)

可以发现信号在频域上离散,非周期

冲激与采样

连续变量t在t=0处的连续单位冲激表示为 δ ( t ) \delta(t) δ(t),定义为
δ ( t ) = { ∞ ,   t = 0 0 ,   t ≠ 0 \delta(t) = \left\{ \begin{aligned} \infty, \ t=0\\ 0,\ t \neq 0\\ \end{aligned} \right. δ(t)={, t=00, t=0

∫ − ∞ ∞ δ ( t ) d t = 1 \int_{-\infty}^{\infty}\delta(t)dt = 1 δ(t)dt=1

连续变量取样特性:
∫ − ∞ ∞ f ( t ) δ ( t ) d t = f ( 0 ) \int_{-\infty}^{\infty}f(t)\delta(t)dt = f(0) f(t)δ(t)dt=f(0)
能够得到函数 f ( t ) f(t) f(t)在冲激位置的取值

离散变量x在x=0处的离散单位冲激表示为 δ ( x ) \delta(x) δ(x),定义为
δ ( x ) = { 1 ,   x = 0 0 ,   x ≠ 0 \delta(x) = \left\{ \begin{aligned} 1, \ x=0\\ 0,\ x \neq 0\\ \end{aligned} \right. δ(x)={1, x=00, x=0

Σ x = − ∞ ∞ δ ( x ) = 1 \Sigma_{x=-\infty}^{\infty}\delta(x) = 1 Σx=δ(x)=1

离散变量取样特性:
Σ x = − ∞ ∞ f ( x ) δ ( x ) = f ( 0 ) \Sigma_{x=-\infty}^{\infty} f(x)\delta(x)= f(0) Σx=f(x)δ(x)=f(0)
能够得到函数 f ( x ) f(x) f(x)在冲激位置的取值
所以可见连续和离散单位冲激的主要区别就在于积分与求和,都需要满足单位冲激的特点

在此基础上引出冲激串的概念
冲激串:无穷个以 Δ T \Delta T ΔT为间距的周期性冲激之和
s Δ T ( t ) = Σ n = − ∞ ∞ δ ( t − n Δ T ) s_{\Delta T}(t) = \Sigma_{n=-\infty}^{\infty}\delta(t-n\Delta T) sΔT(t)=Σn=δ(tnΔT)
在这里插入图片描述

连续变量函数的傅里叶变换

连续变量 t t t的连续函数 f ( t ) f(t) f(t)傅里叶变换为:(相当于处理连续时间的非周期信号)

所谓非周期信号,也可以理解为是周期 T T T + ∞ +\infty +的信号,相当于傅里叶级数 T T T等于 + ∞ +\infty +的时候,也因为 T T T + ∞ +\infty +,所以其在频域空间的频率不再像傅里叶级数离散,而是连续非周期的(也可以理解为 2 π n T \frac{2\pi n}{T} T2πn因为 T = + ∞ T=+\infty T=+,使其在频域空间的对应频率可以被无限细分,实际上就是连续的了)。

(因为 t t t被积分积掉了所以得到的是一个关于 μ \mu μ的函数)
ξ [ f ( t ) ] = ∫ − ∞ ∞ f ( t ) e − 2 π j t μ d t = F ( μ ) = ∫ − ∞ ∞ f ( t ) [ c o s ( 2 π t μ ) − j ∗ s i n ( 2 π t μ ) ] d t \xi[f(t)] = \int_{-\infty}^{\infty}f(t)e^{-2{\pi}jt\mu}dt = F(\mu) = \int_{-\infty}^{\infty}f(t)[cos(2\pi t\mu) - j*sin(2\pi t\mu)]dt ξ[f(t)]=f(t)e2πjtμdt=F(μ)=f(t)[cos(2πtμ)jsin(2πtμ)]dt
傅里叶反变换
f ( t ) = ∫ − ∞ ∞ F ( μ ) e 2 π j t μ d μ f(t) = \int_{-\infty}^{\infty}F(\mu)e^{2{\pi}jt\mu}d{\mu} f(t)=F(μ)e2πjtμdμ (可对应背景中的第二点)

盒状函数的空间域表示(左图)与频率域表示(右图)

参考资料:《数字图像处理》第三版

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值