pytorch学习—绪论

网络模型搭建和训练过程:

  1. 首先是拿到一堆图片,然后读入图片数据,转换成tensor,再封装成dataset类和dataloader类,变成可迭代对象;
  2. 搭建一个网络模型(根据需求来搭建);
  3. 定义损失函数:计算预测值与真实值之间的差距,衡量模型的好坏
  4. 定义优化器:修正模型参数的方向
  5. 训练模型:迭代并不断更新参数,使得模型预测效果最佳

对应Pytorch

数据类型:基本数据类型、各种数据类型之间的转换、tensor的操作
数据处理:公开数据集、数据集加载、GPU加速、数据可视化
模型处理:网络模型库、自定义模型、预训练模型的加载、模型保存、模型训练和测试的两种模式
损失函数:MSE、cross entropy
优化器:SGD、Adam、Adagrad、RMSProp
训练:把前五个步骤组织起来,迭代并更新参数



后续更新…

1.Image Net数据集
2.Pascal VOC数据集
3.Microsoft COCO数据集
4.City Scapes城市街景数据集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值