网络模型搭建和训练过程:
- 首先是拿到一堆图片,然后读入图片数据,转换成tensor,再封装成dataset类和dataloader类,变成可迭代对象;
- 搭建一个网络模型(根据需求来搭建);
- 定义损失函数:计算预测值与真实值之间的差距,衡量模型的好坏
- 定义优化器:修正模型参数的方向
- 训练模型:迭代并不断更新参数,使得模型预测效果最佳
对应Pytorch
数据类型:基本数据类型、各种数据类型之间的转换、tensor的操作
数据处理:公开数据集、数据集加载、GPU加速、数据可视化
模型处理:网络模型库、自定义模型、预训练模型的加载、模型保存、模型训练和测试的两种模式
损失函数:MSE、cross entropy
优化器:SGD、Adam、Adagrad、RMSProp
训练:把前五个步骤组织起来,迭代并更新参数
后续更新…
1.Image Net数据集
2.Pascal VOC数据集
3.Microsoft COCO数据集
4.City Scapes城市街景数据集
1010

被折叠的 条评论
为什么被折叠?



