[Stable diffusion案例篇]IP DESIGN | 3D可爱化模型

本文分享了一款使用Stable Diffusion技术训练的3D可爱化模型,能够将2D图像转化为皮克斯风格的3D效果,适合IP盲盒Logo设计和运营页面。提供模型下载链接,并展示了几张生成的样图和其他应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在找一些IP盲盒的logo,在哩布上找到这款宝藏模型,配合我自己的关键字和lora,生成了几组还蛮不错的图片,今天将模型推荐给大家。

1.我生成的几张样图

图片

图片

  1. 2.模型下载和注意事项

    🌟模型名称:IP DESIGN | 3D可爱化模型

  2. 下载地址:https://www.liblib.ai/modelinfo/2beae39bf23edd20675436f88cbf0942

模型简介:针对皮克斯风格训练的大模型,可以输出皮克斯3D的感觉,又类似泡泡玛特的Q版风格,也可以图生图将2D画面3D化&#x

### Stable Diffusion 示例项目和案例研究 #### 文本到图像生成 Stable Diffusion能够根据输入的文字描述自动生成对应的图片。例如,当给出一段描述“一只穿着红色衣服的小猫坐在蓝色沙发上”,该模型可以创建一张符合此描述的高清图像[^3]。 ```python from diffusers import StableDiffusionPipeline import torch model_id = "CompVis/stable-diffusion-v1-4" device = "cuda" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(device) prompt = "A small cat wearing a red dress sitting on a blue sofa." image = pipe(prompt).images[0] image.save("output_image.png") ``` #### 图像修复 (Inpainting) 对于有损坏或者缺失部分的图片,通过指定mask区域并提供上下文提示词,Stable Diffusion能有效地填补这些空白处的内容,使整个画面更加完整自然[^1]。 #### 超分辨率增强 借助于`sd-webui-additional-networks`插件的支持,Stable Diffusion还可以集成其他先进的超分算法比如RealESRGAN来提高低质量图片的质量,在保持细节的同时放大其尺寸而不失真[^2]。 #### 实际应用案例 - **艺术创作**:艺术家们利用这一工具探索新的视觉表达方式;一些在线平台也提供了基于Stable Diffusion的服务让用户轻松制作个性的艺术品。 - **影视行业**:用于预览场景布置方案或是角色造型设计之前的概念草图绘制工作,节省了大量的时间和成本。 - **产品设计**:帮助设计师快速迭代外观设计方案,并直观展示给客户看,加速决策过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

行者AI视频

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值