pandas dataframe 统计某一列的值出现的次数并形成一列新的列

要统计Pandas DataFrame 中某一列的值出现的次数,并将结果形成一列新的列,可以使用value_counts()方法和map()函数。

下面是一个示例:

import pandas as pd

# 创建一个DataFrame对象
df = pd.DataFrame({'A': ['apple', 'banana', 'apple', 'orange', 'banana', 'banana']})

# 使用value_counts()方法统计'A'列中每个值的次数
value_counts = df['A'].value_counts()

# 使用map()函数将统计结果映射到新的列
df['A_counts'] = df['A'].map(value_counts)

print(df)

运行上述代码会输出下面的结果:

A  A_counts
0   apple         2
1  banana         3
2   apple         2
3  orange         1
4  banana         3
5  banana         3

在上述代码中,我们首先使用value_counts()方法统计了df['A']列中每个值的出现次数,然后将结果存储在value_counts变量中。接着,我们使用map()函数将value_counts中的统计结果映射到新的列A_counts中。这样,DataFrame对象就包含了原始列和对应的值出现次数的新列。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值